If $\lim_{x\to\infty}xf(x)=k$, then $\lim_{x\to\infty}f(x)=0$ and $f(x)=\frac{k+o(1)}{x}$.
METHODOLOGY $1$:
We assume in the following that $k>0$ although analogous analysis applies for $k< 0$. Note that we can write
$$\begin{align}
\left(1+f(x)\right)^x&=\left(1+\frac kx +o\left(\frac{1}{x}\right)\right)^x\\\\
&=\left(1+\frac kx \right)^x\left(1+\frac {o\left(\frac{1}{x}\right)}{1+\frac kx}\right)^x\tag1
\end{align}$$
Now, applying Bernoulli's Inequality reveals (for $x$ sufficiently large)
$$\begin{align}
\left(1+\frac {o\left(\frac{1}{x}\right)}{1+\frac kx}\right)^x\ge 1+\frac{o\left(1\right)}{1+\frac kx}\tag2
\end{align}$$
In addition, we have from Bernoulli's Inequality (for $x$ sufficiently large)
$$\begin{align}
\left(1+\frac {o\left(\frac{1}{x}\right)}{1+\frac kx}\right)^x\le \frac1{\left(1-\frac {o\left(\frac{1}{x}\right)}{1+\frac kx}\right)^x}\le \frac1{1-\frac{o\left(1\right)}{1+\frac kx}}\tag3
\end{align}$$
Putting together $(2)$ and $(3)$ and applying the squeeze theorem we find that
$$\lim_{x\to\infty}\left(1+\frac {o\left(\frac{1}{x}\right)}{1+\frac kx}\right)^x=1\tag4$$
Finally, using $(4)$ in $(1)$ yields the coveted limit
$$\lim_{x\to\infty}\left(1+f(x)\right)^x=e^k$$
METHODOLOGY $2$:
We begin by writing
$$\begin{align}
\left(1+f(x)\right)^x&=e^{x\log(1+f(x))}\\\\
&=e^{x\left(f(x)+O\left(f(x)^2\right)\right)}\tag5
\end{align}$$
Letting $x\to \infty$ in $(5)$, we find that
$$\lim_{x\to\infty}\left(1+f(x)\right)^x=e^k$$
as was to be shown!
Alternatively, since we can write
$$\frac{f(x)}{1+f(x)}\le \log(1+f(x))\le f(x)$$
Then we have the inequalities
$$e^{xf(x)/(1+f(x))}\le \left(1+f(x)\right)^x\le e^{xf(x)}$$
whence application of the squeeze theorem yields
$$\lim_{x\to\infty}\left(1+f(x)\right)^x=e^k$$