Prove: $\forall m,n\in \mathbb{N_{0}}:m+n\in \mathbb{N_{0}}$.
Remark. By $\mathbb{N_{0}}$ we mean $0\in \mathbb{N}$
Proof. For any natural numbers $m$ and $n$, let $S(m,n)$ denote the statement $$m+n\in \mathbb{N_{0}}$$
Base step ($m=n=0$): The statement $S(0,0)$ says $0+0\in \mathbb{N_{0}}$ which is true because \begin{align*} m+n=m\in \mathbb{N_{0}}\tag{$\forall k\in \mathbb{N_{0}}:k+0:=0$ and $m=0$}\\ \end{align*}
Induction on $m$: We are to prove that $\forall m\in \mathbb{N_{0}}:m+0\in \mathbb{N_{0}}$ yet this follows immediately from two facts, namely: $m+0=m\in \mathbb{N_{0}}$ and $p\implies p$ is a tautology.
Thus far \begin{align*}\forall m\in \mathbb{N_{0}}:m+0\in \mathbb{N_{0}}\tag{1}\end{align*}
Fix an arbitrary $p\in \mathbb{N_{0}}$.
Base Step($n=0$): The statement $S(p,0)$ is true given that $p+0=p\in \mathbb{N_{0}}$.
Induction on $n$: The statement $\forall q\in \mathbb{N_{0}}: p+q\in \mathbb{N_{0}}\implies p+(q+1)\in \mathbb{N_{0}}$ is trivial. Let's observe that $p+1\in \mathbb{N_{0}}$,
\begin{align*} p+(q+1)&=(p+q)+1\tag{$\forall k,l\in \mathbb{N_{0}}:k+(l+1):=(k+l)+1$}\\ \end{align*}
And $(p+q)+1\in \mathbb{N_{0}}$ for $(p+q)+1$ is the succesor of $p+q\in \mathbb{N_{0}}$. So,\begin{align*}\forall n\in \mathbb{N_{0}}: p+n\in \mathbb{N_{0}}\ \text{for a fixed}\ p\in \mathbb{N_{0}} \tag{2}\end{align*}
Thus, along with $(1)$ and $(2)$, by mathematical induction it is proved that $\forall m,n\in \mathbb{N_{0}}:S(m,n).$