Prove: $\forall n,m\in \mathbb{N_{0}}:n+m\in \mathbb{N_{0}}$.
Remark. By $\mathbb{N_{0}}$ we mean $0\in \mathbb{N}$.
Proof. Let $n,m\in \mathbb{N_{0}.}$
Providing $m=n=0,$
\begin{align*} n+m=n\tag*{because $n+0:=n$} \end{align*}
Thus $n\in \mathbb{N_{0}}$ given that $n=0$.
Now, assume \begin{align*}\forall k,s\in \mathbb{N}: k+s\in \mathbb{N}\end{align*}
And notice that $(k+1),(s+1)\in \mathbb{N}$. So, in particular, $(k+1)+(s+1)\in \mathbb{N}.$ Therefore $\forall n,m\in \mathbb{N}:n+m\in \mathbb{N}$ by the principle of mathematical induction.