I started with
$cos(q) = cos(a+ib+jc+kd)$
$cos(q) = cos(a)cos(ib+jc+kd)-sin(a)sin(ib+jc+kd)$
$cos(q) = cos(a)(cos(ib)(cos(jc)cos(kd)-sin(jc)sin(kd))-sin(ib)(sin(jc)cos(kd)+cos(jc)sin(kd)))-sin(a)(sin(ib)(cos(jc)cos(kd)-sin(jc)sin(kd))+cos(ib)(sin(jc)cos(kd)+cos(jc)sin(kd)))$
$cos(q) = cos(a)(cosh(b)(jcosh(c)kcosh(d)-jsinh(c)ksinh(d))-isinh(b)(jsinh(c)kcosh(d)+jcosh(c)ksinh(d)))-sin(a)(isinh(b)(jcosh(c)kcosh(d)-jsinh(c)ksinh(d))+icosh(b)(jsinh(c)kcosh(d)+jcosh(c)ksinh(d)))$
then with the help of $i^2=j^2=k^2=ijk=-1$
I got to
$cos(q) = cos(a)(cosh(b)(icosh(c)cosh(d)-isinh(c)sinh(d))-isinh(b)(isinh(c)cosh(d)+icosh(c)sinh(d)))-sin(a)(isinh(b)(icosh(c)cosh(d)-isinh(c)sinh(d))+icosh(b)(-isinh(c)cosh(d)+icosh(c)sinh(d)))$
and finally to
$cos(q) = icos(a)(cosh(b)cosh(c-d)+sinh(b)sinh(c+d))+sin(a)cosh(c-d)(sinh(b)-cosh(b))$
I'd like to know if it is correct, if it is a legitimate function, since I could't find a quaternionic trigonometric function anywhere on the internet. I found it strange since j and k don't appear in the end product.
P.S. I also tried expanding it with Taylor series but it found it cumbersome.