We can define the sine, cosine, tangent and co. via the associated series expansions.
But before we derive anything, we first have to define something: Let's say that a quaternion $q$ of the general form $\mathbb{H} \ni q \equiv w + x \cdot i + y \cdot j + z \cdot k \wedge \left\{ w,\, x,\, y,\, z \right\} \in \mathbb{R}$, where $i,\, j,\, k$ are the classical imaginary units. With this we can split each quaternion into a scarlar part $\mathrm{s}$ and a vector part $\mathrm{v}$: $q = \mathrm{s} + \mathrm{v}$ - where $\mathrm{s} = w$ and $\mathrm{v} = x \cdot i + y \cdot j + z \cdot k$.
Since the series expansions I'm going to use are all power series, we can do a little bit and look at the general powers of the scalar part:
$$
\begin{align*}
\mathrm{v}^{2} &= \left( x \cdot i + y \cdot j + z \cdot k \right)^{2}\\
\mathrm{v}^{2} &= -x^{2} - y^{2} - z^{2}\\
\mathrm{v}^{2} &= -\left( x^{2} + y^{2} + z^{2} \right)\\
\mathrm{v}^{2} &= -\left( \sqrt{x^{2} + y^{2} + z^{2}} \right)^{2}\\
\mathrm{v}^{2} &= -\left| x^{2} + y^{2} + z^{2} \right|^{2}\\
\mathrm{v}^{2} &= -\left| \mathrm{v} \right|^{2}\\
\end{align*}
$$
So when $n \in \mathbb{N}$:
$$
\begin{align*}
\mathrm{v}^{2 \cdot n} &= \left( \mathrm{v}^{2} \right)^{n}\\
\mathrm{v}^{2 \cdot n} &= \left( -\left| \mathrm{v} \right|^{2} \right)^{n} \cdot \mathrm{v}\\
\mathrm{v}^{2 \cdot n} &= \left( -1 \right)^{n} \cdot \left( \left| \mathrm{v} \right|^{2} \right)^{n} \cdot \mathrm{v}\\
\mathrm{v}^{2 \cdot n} &= \left( -1 \right)^{n} \cdot \left| \mathrm{v} \right|^{2 \cdot n}\\
\\
\mathrm{v}^{2 \cdot n + 1} &= \left( \mathrm{v}^{2} \right)^{n} \cdot \mathrm{v}\\
\mathrm{v}^{2 \cdot n + 1} &= \left( \mathrm{v}^{2} \right)^{n} \cdot \mathrm{v}\\
\mathrm{v}^{2 \cdot n + 1} &= \left( -\left| \mathrm{v} \right|^{2} \right)^{n} \cdot \mathrm{v}\\
\mathrm{v}^{2 \cdot n + 1} &= \left( -1 \right)^{n} \cdot \left( \left| \mathrm{v} \right|^{2} \right)^{n} \cdot \mathrm{v}\\
\mathrm{v}^{2 \cdot n + 1} &= \left( -1 \right)^{n} \cdot \left| \mathrm{v} \right|^{2 \cdot n} \cdot \mathrm{v}\\
\end{align*}
$$
Sine And Cosine
According to the addition theorems of sine and cosine we get:
$$
\begin{align*}
\sin\left( \mathrm{s} + \mathrm{v} \right) &= \cos\left( \mathrm{v} \right) \cdot \sin\left( \mathrm{s} \right) + \cos\left( \mathrm{s} \right) \cdot \sin\left( \mathrm{v} \right)\\
\cos\left( \mathrm{s} + \mathrm{v} \right) &= \cos\left( \mathrm{s} \right) \cdot \cos\left( \mathrm{v} \right) + \sin\left( \mathrm{s} \right) \cdot \sin\left( \mathrm{v} \right)\\
\end{align*}
$$
This means that the scalar part and the vector part have been separated and you can now work with the series expansions:
Sine
$$
\begin{align*}
\sin\left( \mathrm{v} \right) &\equiv \sum\limits_{k = 0}^{\infty}\left[ \frac{\left( -1 \right)^{k}}{\left( 2 \cdot k + 1 \right)!} \cdot \mathrm{v}^{2 \cdot k + 1} \right]\\
\sin\left( \mathrm{v} \right) &\equiv \sum\limits_{k = 0}^{\infty}\left[ \frac{\left( -1 \right)^{k}}{\left( 2 \cdot k + 1 \right)!} \cdot \left( -1 \right)^{k} \cdot \left| \mathrm{v} \right|^{2 \cdot k} \cdot \mathrm{v} \right]\\
\sin\left( \mathrm{v} \right) &\equiv \sum\limits_{k = 0}^{\infty}\left[ \frac{\left( -1 \right)^{2 \cdot k}}{\left( 2 \cdot k + 1 \right)!} \cdot \left| \mathrm{v} \right|^{2 \cdot k} \cdot \mathrm{v} \right]\\
\sin\left( \mathrm{v} \right) &\equiv \sum\limits_{k = 0}^{\infty}\left[ \frac{\left( \left( -1 \right)^{2} \right)^{k}}{\left( 2 \cdot k + 1 \right)!} \cdot \left| \mathrm{v} \right|^{2 \cdot k} \cdot \mathrm{v} \right]\\
\sin\left( \mathrm{v} \right) &\equiv \sum\limits_{k = 0}^{\infty}\left[ \frac{\left( 1 \right)^{k}}{\left( 2 \cdot k + 1 \right)!} \cdot \left| \mathrm{v} \right|^{2 \cdot k} \cdot \mathrm{v} \right]\\
\sin\left( \mathrm{v} \right) &\equiv \sum\limits_{k = 0}^{\infty}\left[ \frac{1}{\left( 2 \cdot k + 1 \right)!} \cdot \left| \mathrm{v} \right|^{2 \cdot k} \cdot \mathrm{v} \right]\\
\sin\left( \mathrm{v} \right) &\equiv \sum\limits_{k = 0}^{\infty}\left[ \frac{1}{\left( 2 \cdot k + 1 \right)!} \cdot \left| \mathrm{v} \right|^{2 \cdot k} \right] \cdot \mathrm{v}\\
\sin\left( \mathrm{v} \right) &\equiv \sum\limits_{k = 0}^{\infty}\left[ \frac{1}{\left( 2 \cdot k + 1 \right)!} \cdot \left| \mathrm{v} \right|^{2 \cdot k + 1} \right] \cdot \frac{\mathrm{v}}{\left| \mathrm{v} \right|}\\
\sin\left( \mathrm{v} \right) &\equiv \sinh\left( \left| \mathrm{v} \right| \right) \cdot \frac{\mathrm{v}}{\left| \mathrm{v} \right|}\\
\end{align*}
$$
Cosine
$$
\begin{align*}
\cos\left( \mathrm{v} \right) &\equiv \sum\limits_{k = 0}^{\infty}\left[ \frac{\left( -1 \right)^{k}}{\left( 2 \cdot k\right)!} \cdot \mathrm{v}^{2 \cdot k} \right]\\
\cos\left( \mathrm{v} \right) &\equiv \sum\limits_{k = 0}^{\infty}\left[ \frac{\left( -1 \right)^{k}}{\left( 2 \cdot k\right)!} \cdot \left( -1 \right)^{k} \cdot \left| \mathrm{v} \right|^{2 \cdot k} \right]\\
\cos\left( \mathrm{v} \right) &\equiv \sum\limits_{k = 0}^{\infty}\left[ \frac{\left( -1 \right)^{2 \cdot k}}{\left( 2 \cdot k\right)!} \cdot \left| \mathrm{v} \right|^{2 \cdot k} \right]\\
\cos\left( \mathrm{v} \right) &\equiv \sum\limits_{k = 0}^{\infty}\left[ \frac{\left( \left( -1 \right)^{2} \right)^{k}}{\left( 2 \cdot k\right)!} \cdot \left| \mathrm{v} \right|^{2 \cdot k} \right]\\
\cos\left( \mathrm{v} \right) &\equiv \sum\limits_{k = 0}^{\infty}\left[ \frac{\left( 1 \right)^{k}}{\left( 2 \cdot k\right)!} \cdot \left| \mathrm{v} \right|^{2 \cdot k} \right]\\
\cos\left( \mathrm{v} \right) &\equiv \sum\limits_{k = 0}^{\infty}\left[ \frac{1}{\left( 2 \cdot k\right)!} \cdot \left| \mathrm{v} \right|^{2 \cdot k} \right]\\
\cos\left( \mathrm{v} \right) &\equiv \cosh\left( \left| \mathrm{v} \right| \right)\\
\end{align*}
$$
General
$$\fbox{$
\begin{align*}
\sin\left( q \right) &= \cosh\left( \left| \mathrm{v} \right| \right) \cdot \sin\left( \mathrm{s} \right) + \cos\left( \mathrm{s} \right) \cdot \sinh\left( \left| \mathrm{v} \right| \right) \cdot \frac{\mathrm{v}}{\left| \mathrm{v} \right|}\\
\cos\left( q \right) &= \cos\left( \mathrm{s} \right) \cdot \cosh\left( \left| \mathrm{v} \right| \right) + \sin\left( \mathrm{s} \right) \cdot \sinh\left( \left| \mathrm{v} \right| \right) \cdot \frac{\mathrm{v}}{\left| \mathrm{v} \right|}\\
\end{align*}
$} \tag{1}$$
$$\fbox{$
\begin{align*}
\sin\left( q \right) &= \cosh\left( \left| \sqrt{x^{2} + y^{2} + z^{2}} \right| \right) \cdot \sin\left( w \right) + \cos\left( w \right) \cdot \sinh\left( \sqrt{x^{2} + y^{2} + z^{2}} \right) \cdot \frac{x \cdot i + y \cdot j + z \cdot k}{\sqrt{x^{2} + y^{2} + z^{2}}}\\
\cos\left( q \right) &= \cos\left( w \right) \cdot \cosh\left( \sqrt{x^{2} + y^{2} + z^{2}} \right) + \sin\left( w \right) \cdot \sinh\left( \sqrt{x^{2} + y^{2} + z^{2}} \right) \cdot \frac{x \cdot i + y \cdot j + z \cdot k}{\sqrt{x^{2} + y^{2} + z^{2}}}\\
\end{align*}
$} \tag{1}$$
Tangent And Cotangent
We know the definition of the tangent $\tan\left( q \right) \equiv \frac{\sin\left( q \right)}{\cos\left( q \right)}$ and the cotangent $\cot\left( q \right) \equiv \frac{\cos\left( q \right)}{\sin\left( q \right)}$. So we can just use our well derived formulas to solve. For that we first have to look at division with quaternions:
$$
\begin{align*}
\frac{q_{1}}{q_{2}} &= \frac{\mathrm{s}_{1} + \mathrm{v}_{1}}{\mathrm{s}_{2} + \mathrm{v}_{2}}\\
\frac{q_{1}}{q_{2}} &= \frac{\left( \mathrm{s}_{1} + \mathrm{v}_{1} \right) \cdot \left( \mathrm{s}_{2} + \overline{\mathrm{v}_{2}} \right)}{\left( \mathrm{s}_{2} + \mathrm{v}_{2} \right) \cdot \left( \mathrm{s}_{2} + \overline{\mathrm{v}_{2}} \right)}\\
\frac{q_{1}}{q_{2}} &= \frac{\left( \mathrm{s}_{1} + \mathrm{v}_{1} \right) \cdot \left( \mathrm{s}_{2} + \overline{\mathrm{v}_{2}} \right)}{\left| \mathrm{s}_{2} + \mathrm{v}_{2} \right|^{2}}\\
\frac{q_{1}}{q_{2}} &= \frac{\left( \mathrm{s}_{1} + \mathrm{v}_{1} \right) \cdot \left( \mathrm{s}_{2} - \mathrm{v}_{2} \right)}{\left| \mathrm{s}_{2} + \mathrm{v}_{2} \right|^{2}}\\
\end{align*}
$$
So:
$$\fbox{$
\begin{align*}
\tan\left( q \right) &\equiv \frac{\left( \cosh\left( \left| \mathrm{v} \right| \right) \cdot \sin\left( \mathrm{s} \right) + \cos\left( \mathrm{s} \right) \cdot \sinh\left( \left| \mathrm{v} \right| \right) \cdot \frac{\mathrm{v}}{\left| \mathrm{v} \right|} \right) \cdot \left( \cos\left( \mathrm{s} \right) \cdot \cosh\left( \left| \mathrm{v} \right| \right) - \sin\left( \mathrm{s} \right) \cdot \sinh\left( \left| \mathrm{v} \right| \right) \cdot \frac{\mathrm{v}}{\left| \mathrm{v} \right|} \right)}{\left| \cos\left( \mathrm{s} \right) \cdot \cosh\left( \left| \mathrm{v} \right| \right) + \sin\left( \mathrm{s} \right) \cdot \sinh\left( \left| \mathrm{v} \right| \right) \cdot \frac{\mathrm{v}}{\left| \mathrm{v} \right|} \right|^{2}}\\
\cot\left( q \right) &\equiv \frac{\left( \cos\left( \mathrm{s} \right) \cdot \cosh\left( \left| \mathrm{v} \right| \right) + \sin\left( \mathrm{s} \right) \cdot \sinh\left( \left| \mathrm{v} \right| \right) \cdot \frac{\mathrm{v}}{\left| \mathrm{v} \right|} \right) \cdot \left( \cosh\left( \left| \mathrm{v} \right| \right) \cdot \sin\left( \mathrm{s} \right) - \cos\left( \mathrm{s} \right) \cdot \sinh\left( \left| \mathrm{v} \right| \right) \cdot \frac{\mathrm{v}}{\left| \mathrm{v} \right|} \right)}{\left| \cosh\left( \left| \mathrm{v} \right| \right) \cdot \sin\left( \mathrm{s} \right) + \cos\left( \mathrm{s} \right) \cdot \sinh\left( \left| \mathrm{v} \right| \right) \cdot \frac{\mathrm{v}}{\left| \mathrm{v} \right|} \right|^{2}}\\
\end{align*}
$} \tag{2}$$