Another solution:
As several people noticed, $AA^{2}=A^{3}=-B^{3}$ (since $A^{3}+B^{3}=0$), so that
$AA^{2}B^{2}=-B^{3}B^{2}=-B^{5}=-B^{2}\underbrace{B^{3}}_{\substack{=-A^{3}
\\\text{(since }A^{3}+B^{3}=0\text{)}}}=B^{2}A^{3}=B^{2}A^{2}A$,
and hence
$A\left( BA-A^{2}B^{2}\right) =ABA-\underbrace{AA^{2}B^{2}}_{=B^{2}A^{2}
A}=ABA-B^{2}A^{2}A=\underbrace{\left( AB-B^{2}A^{2}\right) }_{=I_{n}}A=A$.
But also, $B^{2}B=B^{3}=-A^{3}$ (since $A^{3}+B^{3}=0$), thus
$B^{2}BA=-A^{3}A=-A^{4}=-A\underbrace{A^{3}}_{\substack{=-B^{3}\\\text{(since
}A^{3}+B^{3}=0\text{)}}}=AB^{3}=ABB^{2}$
$B^{2}\left( BA-A^{2}B^{2}\right) =\underbrace{B^{2}BA}_{=ABB^{2}}
-B^{2}A^{2}B^{2}=ABB^{2}-B^{2}A^{2}B^{2}=\underbrace{\left( AB-B^{2}
A^{2}\right) }_{=I_{n}}B^{2}=B^{2}$.
Thus,
$\left( BA-A^{2}B^{2}\right) ^{2}=\left( BA-A^{2}B^{2}\right) \cdot\left(
BA-A^{2}B^{2}\right) $
$=B\underbrace{A\left( BA-A^{2}B^{2}\right) }_{=A}-A^{2}\underbrace{B^{2}
\left( BA-A^{2}B^{2}\right) }_{=B^{2}}=BA-A^{2}B^{2}$.
As a consequence, $BA-A^{2}B^{2}$ is a projection.
But recall a known fact which says that if an endomorphism $E$ of a
finite-dimensional vector space $V$ over a field $k$ is a projection, then
$\operatorname*{Tr}E=\dim\left( E\left( V\right) \right) \cdot1_{k}$.
Applied to $V=\mathbb{C}^{n}$ and $E=BA-A^{2}B^{2}$, this yields
$\operatorname*{Tr}\left( BA-A^{2}B^{2}\right) =\dim\left( \left(
BA-A^{2}B^{2}\right) \left( V\right) \right) \cdot1_{\mathbb{C}}$. Hence,
$\dim\left( \left( BA-A^{2}B^{2}\right) \left( V\right) \right)
\cdot1_{\mathbb{C}}=\operatorname*{Tr}\left( BA-A^{2}B^{2}\right)
=\underbrace{\operatorname*{Tr}\left( BA\right) }_{=\operatorname*{Tr}
\left( AB\right) }-\underbrace{\operatorname*{Tr}\left( A^{2}B^{2}\right)
}_{=\operatorname*{Tr}\left( B^{2}A^{2}\right) }$
$=\operatorname*{Tr}\left( AB\right) -\operatorname*{Tr}\left( B^{2}
A^{2}\right) =\operatorname*{Tr}\left( \underbrace{AB-B^{2}A^{2}}_{=I_{n}
}\right) =\operatorname*{Tr}\left( I_{n}\right) =n$.
Since $\operatorname*{char}\mathbb{C}=0$, this yields $\dim\left( \left(
BA-A^{2}B^{2}\right) \left( V\right) \right) =n$. Thus, $\left(
BA-A^{2}B^{2}\right) \left( V\right) $ is an $n$-dimensional vector
subspace of $V$. But since the only $n$-dimensional vector subspace of $V$ is
$V$ itself, this yields $\left( BA-A^{2}B^{2}\right) \left( V\right) =V$.
Hence, the image of the projection $BA-A^{2}B^{2}$ is the whole space $V$. But
since the only projection of $V$ whose image is the whole space $V$ is the
identity map $I_{n}:V\rightarrow V$, this yields that $BA-A^{2}B^{2}=I_{n}$, qed.