I am trying to compute the following double sum
$$\boxed{\sum_{n, m>0, n \neq m} \frac{1}{n\left(m^{2}-n^{2}\right)}=\frac{3}{4} \zeta(3)}$$
I proceeded as following
$$\sum_{n=1}^{\infty}\sum_{m=1}^{\infty}\frac{1}{n}\frac{1}{\left(m^2-n^2 \right)}=\sum_{n=1}^{\infty}\frac{1}{n}\sum_{m=1}^{\infty}\frac{1}{\left(m+n \right)\left(m-n \right)}$$
$$=\sum_{n=1}^{\infty}\frac{1}{n}\sum_{m=1}^{\infty}\frac{1}{2m}\left[\frac{1}{\left(m+n \right)}+\frac{1}{\left(m-n \right)}\right]$$
$$=\frac{1}{2}\underbrace{\sum_{n=1}^{\infty}\frac{1}{n}\sum_{m=1}^{\infty}\frac{1}{m}\frac{1}{\left(m+n \right)}}_{2\zeta(3)}+ \frac{1}{2}\sum_{n=1}^{\infty}\frac{1}{n} \sum_{m=1}^{\infty}\frac{1}{m}\frac{1}{\left(m-n \right)}$$
The first sum is given here and I have also evaluated here, therefore we get that
$$\sum_{n=1}^{\infty}\sum_{m=1}^{\infty}\frac{1}{n}\frac{1}{\left(m^2-n^2 \right)}=\zeta(3)-\frac{1}{2}\sum_{n=1}^{\infty}\frac{1}{n^2} \sum_{m=1}^{\infty}\frac{1}{m}-\frac{1}{\left(m-n \right)}$$
$$=\zeta(3)-\frac{1}{2}\sum_{n=1}^{\infty}\frac{1}{n^2} \int_{0}^{1}\frac{1-x^{-n}}{1-x}dx$$
$$=\zeta(3)-\frac{1}{2} \int_{0}^{1}\frac{1}{1-x}\left[ \sum_{n=1}^{\infty}\frac{1}{n^2}-\sum_{n=1}^{\infty}\frac{x^{-n}}{n^2}\right]dx$$
$$=\zeta(3)-\frac{1}{2} \int_{0}^{1}\frac{\zeta(2)-Li_{2}\left( \frac{1}{x} \right)}{1-x}dx$$
From this post we can use the relation
$$Li_{2}\left( \frac{1}{x} \right)-Li_{2}\left( x \right)=\zeta(2)-\frac{1}{2}\log^2(-x)$$
To get
$$\sum_{n=1}^{\infty}\sum_{m=1}^{\infty}\frac{1}{n}\frac{1}{\left(m^2-n^2 \right)}=\zeta(3)-\frac{\zeta(2)}{2} \int_{0}^{1}\frac{1}{1-x}dx+\frac{1}{2} \int_{0}^{1}\frac{Li_{2}\left( x \right)+\zeta(2)-\frac{1}{2}\log^2(-x)}{1-x}dx$$
$$=\zeta(3)+\frac{\zeta(2)}{2} \int_{0}^{1}\frac{1}{1-x}dx+\frac{1}{2} \int_{0}^{1}\frac{Li_{2}\left( x \right)}{1-x}dx-\frac{1}{4}\int_{0}^{1}\frac{\log^2(-x)}{1-x}dx$$
$$=\zeta(3)+\frac{\zeta(2)}{2} \log(1-x)\Big|_{0}^{1}+\frac{1}{2}\left\{ -Li_{2}(x)\log(1-x)\Big|_{0}^{1}-\int_{0}^{1}\frac{\log^2(1-x)}{x}dx\right\} -\frac{1}{4}\int_{0}^{1}\frac{\log^2(-x)}{1-x}dx$$
$$=\zeta(3)-\frac{1}{2}2\zeta(3) -\frac{1}{4}\int_{0}^{1}\frac{\log^2(-x)}{1-x}dx$$
$$\sum_{n=1}^{\infty}\sum_{m=1}^{\infty}\frac{1}{n}\frac{1}{\left(m^2-n^2 \right)}=-\frac{1}{4}\int_{0}^{1}\frac{\log^2(-x)}{1-x}dx$$
My questions are the following:
(1)Is the last equality correct?
(2)If so, what is the meaning of $\log^2(-x)=\log^2(e^{i\pi}x)$?
(3) How do we solve the last integral?
$$\displaystyle \sum_{n=1}^{\infty}\sum_{m=1}^{\infty}\frac{1}{n}\frac{1}{\left(m^2-n^2 \right)}=\frac{1}{2}\int_{0}^{1}\frac{\log^2(x)}{1+x} , \mathrm dx$$
– NoName May 27 '21 at 01:24