3

I was trying to solve this series and I have an exam in a week. I can't understand how to find its sum although I managed to rework it by transforming $\frac{1}{m^2 - n^2}$ into $\frac{1}{2m}(\frac{1}{m+n} - \frac{1}{n-m})$.

I'm sure there is a way, as my book explicitly confirms this as being convergent and having a sum.

Any help is appreciated.

  • That looks like it might telescope. – Angina Seng Nov 10 '17 at 19:28
  • @LordSharktheUnknown Exactly. But I don't know how to proceed thereafter. – NTAuthority Nov 10 '17 at 19:31
  • I do not fully understand the used notation. If, for a fixed value of $m$, you want the sum of all the values of $\frac{1}{m^2-n^2}$ where $n\in\mathbb{N}^+$ differs from $m$, I would use $$\sum_{\substack{n\geq 1 \ n\neq m}}\frac{1}{m^2-n^2}$$ for clarity. – Jack D'Aurizio Nov 10 '17 at 21:51
  • Or you want the sum $$\sum_{\substack{n,m\geq 1,\ m\neq n}}\frac{1}{m^2-n^2}$$ ? There are some issues here. – Jack D'Aurizio Nov 10 '17 at 21:52
  • @JackD'Aurizio that's actually how the series was written in the book. I too think it might look confusing though. – NTAuthority Nov 11 '17 at 10:06

4 Answers4

4

I get $-\frac{3}{4m^2}$.

\begin{align} s(m) &=\sum_{\underset{m \neq n}{n = 1}}^{\infty} \frac{1}{m^2 - n^2}\\ &=\sum_{\underset{m \neq n}{n = 1}}^{\infty} \frac{1}{2m}\left(\frac{1}{m+n} + \frac{1}{m-n}\right)\\ &= \frac{1}{2m}\sum_{\underset{m \neq n}{n = 1}}^{\infty}\left(\frac{1}{m+n} + \frac{1}{m-n}\right)\\ &= \frac{1}{2m}\left(\sum_{n = 1}^{m-1}\left(\frac{1}{m+n} + \frac{1}{m-n}\right) +\sum_{n = m+1}^{\infty}\left(\frac{1}{m+n} + \frac{1}{m-n}\right)\right)\\ &= \frac{1}{2m}(t(m)+u(m)) \end{align}

\begin{align} t(m) &=\sum_{n = 1}^{m-1}\left(\frac{1}{m+n} +\frac{1}{m-n}\right)\\ &= \sum_{n = 1}^{m-1}\frac{1}{m+n} +\sum_{n = 1}^{m-1}\frac{1}{m-n}\\ &= \sum_{n = m+1}^{2m-1}\frac{1}{n} + \sum_{n = 1}^{m-1}\frac{1}{n}\\ &=H_{2m-1}-H_m+H_{m-1}\\ &=H_{2m-1}-\dfrac1{m}\\ u(m) &=\sum_{n = m+1}^{\infty}\left(\frac{1}{m+n} + \frac{1}{m-n}\right)\\ &=\lim_{k \to \infty}\sum_{n = m+1}^{k}(\frac{1}{m+n} + \frac{1}{m-n})\\ &=\lim_{k \to \infty}\left(\sum_{n = m+1}^{k}\frac{1}{m+n} +\sum_{n = m+1}^{k}\frac{1}{m-n}\right)\\ &=\lim_{k \to \infty}\left(\sum_{n = m+1}^{k}\frac{1}{m+n} -\sum_{n = m+1}^{k}\frac{1}{n-m}\right)\\ &=\lim_{k \to \infty}\left(\sum_{n = 2m+1}^{k+m}\frac{1}{n} - \sum_{n = 1}^{k-m}\frac{1}{n}\right)\\ &=\lim_{k \to \infty}\left(\sum_{n = 2m+1}^{k-m}\frac{1}{n}+\sum_{n = k-m+1}^{k+m}\frac{1}{n} - (\sum_{n = 1}^{2m}\frac{1}{n}+\sum_{n = 2m+1}^{k-m}\frac{1}{n})\right)\\ &=\lim_{k \to \infty}\left(\sum_{n = k-m+1}^{k+m}\frac{1}{n} - \sum_{n = 1}^{2m}\frac{1}{n}\right)\\ &=-H_{2m} \qquad\text{since }\sum_{n = k-m+1}^{k+m}\frac{1}{n}<\frac{2m}{k-m+1} \to 0\\ \end{align} So,

\begin{align} s(m) &=\frac1{2m}(H_{2m-1}-\dfrac1{m}-H_{2m})\\ &=\frac1{2m}(-\dfrac1{m}-\dfrac1{2m})\\ &=-\frac{3}{4m^2}\\ \end{align}

marty cohen
  • 107,799
3

We have the series were $n<m$ $\frac 1{2m}(\frac {1}{m + 1} + \frac {1}{m + 2} +\frac {1}{m + 3}+\cdots+ \frac {1}{2m - 1}- (\frac {1}{1-m} + \frac {1}{2-m} +\frac {1}{3-m}+\cdots+ \frac {1}{-1}))$

$\frac 1{2m}(\frac {1}{m + 1} + \frac {1}{m + 2} +\frac {1}{m + 3}+\cdots+ \frac {1}{2m - 1} + \frac {1}{1} + \frac {1}{2} +\frac {1}{3}+\cdots+ \frac {1}{m-1}))$

Then we skip $n = m$

And we go from $m<n<2m$

$\frac 1{2m}(\frac {1}{2m + 1} + \frac {1}{2m + 2} +\frac {1}{2m + 3}+\cdots+ \frac {1}{3m - 1}- (\frac {1}{1} + \frac {1}{2} +\frac {1}{3}+\cdots+ \frac {1}{m-1}))$

and we have some stuff that cancels with the first partial sum

$\frac 1{2m}(\frac {1}{m + 1} + \frac {1}{m + 2} +\frac {1}{m + 3}+\cdots+ \frac {1}{2m - 1} + \frac {1}{2m + 1} + \frac {1}{2m + 2} +\frac {1}{2m + 3}+\cdots+ \frac {1}{3m - 1})$

Note that we have skipped $\frac {1}{2m}$

$n\ge 2m$

$\frac 1{2m}(\frac {1}{3m} - \frac {1}{m} + \frac {1}{3m+1} - \frac {1}{m+1}\cdots)$

Now we are subtracting every term from $\frac {1}{m+1}$ on that we added since the beginning.

$\frac {1}{2m}(-\frac {1}{m}-\frac {1}{2m}) = -\frac {3}{4m^2}$

Doug M
  • 57,877
3

$$ \begin{align} \sum_{\substack{n=1\\n\ne m}}^\infty\frac1{m^2-n^2} &=\lim_{N\to\infty}\sum_{\substack{n=1\\n\ne m}}^N\frac1{m^2-n^2}\tag1\\ &=\lim_{N\to\infty}\frac1{2m}\sum_{\substack{n=1\\n\ne m}}^N\left(\frac1{m-n}+\frac1{m+n}\right)\tag2\\ &=\lim_{N\to\infty}\frac1{2m}\sum_{\substack{n=-N\\n\ne0,n\ne m,n\ne-m}}^N\frac1{m+n}\tag3\\ &=\lim_{N\to\infty}\frac1{2m}\sum_{\substack{n=m-N\\n\ne m,n\ne 2m,n\ne0}}^{m+N}\frac1n\tag4\\ &=\lim_{N\to\infty}\frac1{2m}\left(-\frac1m-\frac1{2m}+\sum_{\substack{n=m-N\\n\ne0}}^{m+N}\frac1n\right)\tag5\\[6pt] &=\lim_{N\to\infty}\frac1{2m}\left(-\frac1m-\frac1{2m}+\sum_{n=N-m+1}^{m+N}\frac1n\right)\tag6\\[12pt] &=\frac1{2m}\left(-\frac1m-\frac1{2m}\right)\tag7\\[12pt] &=-\frac3{4m^2}\tag8 \end{align} $$ Explanation:
$(1)$: write infinite sum as a limit
$(2)$: use partial fractions
$(3)$: write as a single sum
$(4)$: substitute $n\mapsto n-m$
$(5)$: move the missing terms out front
$(6)$: cancel terms with their negatives
$(7)$: take the limit using $\sum\limits_{n=N-m+1}^{m+N}\frac1n\le\frac{2m}{N-m+1}$
$(8)$: simplify

robjohn
  • 345,667
1

To show the convergence, we can see that the tail series is $$\sum_{n=1}^{\infty}\frac{1}{m^{2}-(2m+n)^{2}}=-\sum_{n=1}^{\infty}\frac{1}{3m^{2}+4mn+n^{2}},$$ and since $n^{2}\leq 3m^{2}+4mn+n^{2},$ this is bounded absolutely by $\sum_{n=1}^{\infty}1/n^{2}$.

Using this same idea, observe that if $n=m+k,$ $$\frac{1}{2m}\left(\frac{1}{m+n}-\frac{1}{n-m}\right)=\frac{1}{2m}\left(\frac{1}{2m+k}-\frac{1}{k}\right),$$ so if we take the sum over $k\geq1,$ we obtain $$\sum_{n\geq m+1}\frac{1}{m^{2}-n^{2}}=-\frac{1}{2m}\sum_{k=1}^{2m}\frac{1}{k},$$ since the remaining terms telescope. The sum of the first $m-1$ terms is $$\sum_{n=1}^{m-1}\frac{1}{2m}\left(\frac{1}{m+n}+\frac{1}{m-n}\right)=\frac{1}{2m}\left(\sum_{n=m+1}^{2m-1}\frac{1}{n}+\sum_{n=1}^{m-1}\frac{1}{n}\right)=\frac{1}{2m}\left(\sum_{k=1}^{2m-1}\frac{1}{k}-\frac{1}{m}\right).$$

Then the whole sum equals $$-\frac{1}{2m}\cdot\frac{1}{2m}-\frac{1}{2m}\cdot\frac{1}{m}=-\frac{3}{4m^{2}}.$$