I want to show that $\psi: \mathbb{Q} \otimes_{\mathbb{Z}} \left( \displaystyle \prod_{n \in \mathbb{N}} \mathbb{Z}_{2^n} \right) \to \displaystyle \prod_{n \in \mathbb{N}}(\mathbb{Q} \otimes_{\mathbb{Z}} \mathbb{Z}_{2^n})$ cannot be an isomorphism.
My attempt consists in showing $\displaystyle \prod_{n \in \mathbb{N}}(\mathbb{Q} \otimes_{\mathbb{Z}} \mathbb{Z}_{2^n})=0$ and $ \mathbb{Q} \otimes_{\mathbb{Z}} \left( \displaystyle \prod_{n \in \mathbb{N}} \mathbb{Z}_{2^n} \right) \neq 0$, but maybe it is not true.
Let $q\otimes a \in \mathbb{Q} \otimes_{\mathbb{Z}} \mathbb{Z}_{2^k}$, for some $k \in \mathbb{N}$. Then $$q \otimes_{\mathbb{Z}}a = \frac{q 2^k}{2^k} \otimes_{\mathbb{Z}}a = \frac{q}{2^k} \otimes_{\mathbb{Z}} 2^ka = \frac{q}{2^k} \otimes_{\mathbb{Z}} 0 = 0.$$
So I guess the product is zero. But I don't know to show that the otherside is nonzero. Can you help me? Also, if my attempt is not correct, can you give me a hint?