Show that $1\otimes (1,1,\ldots)\neq 0$ in $\mathbb{Q} \otimes_{\mathbb{Z}} \prod_{n=2}^{\infty} (\mathbb{Z}/n \mathbb{Z})$.
Here's what I tried:
If $1\otimes (1,1,\ldots)= 0$, then $1\otimes (1,1,\ldots)= (-1)\otimes (1,1,\ldots)=1\otimes (-1,-1,\ldots)$, but $1\neq -1$ in $\mathbb{Z}/n\mathbb{Z}$ for all $n$.
I am not sure that this is valid...