Exercise: Let $(X,t_1)$, $(Y,t_2)$ be topological spaces where $ X=\{1,2,3\}$, $Y=\{1,2\}$
$t_1=\{\emptyset, X,\{1\},\{2,3\} \}$,
$t_2=\{ \emptyset , Y, \{1\} \} $
find a base of the product topology $X\times Y$
my solution: we know $t_1$ is a base for $X$ and $t_2$ a base of $Y$ so we just need to find the product $t_1 \times t_2$
$t_1 \times t_2= \{\emptyset, X\times Y, \{ X\times\{1\} \},\{\{1\}\times Y\}, \{(1,1)\},\{\{2,3\}\times Y \}, \{\{2,3\}\times \{1\} \} \}$
Is the set $t_1 \times t_2$ correct ?