6

The function $ \displaystyle\frac{1}{\sqrt{e^{x}-1}}$ doesn't have a Laurent series expansion at $x=0$.

But according to Wolfram Alpha, it does have a series expansion with terms raised to non-integer powers:

$$ \frac{1}{\sqrt{e^{x}-1}} = \frac{1}{\sqrt{x}}- \frac{\sqrt{x}}{4} + \cdots$$

How is that series derived?

My initial thought was to use the general binomial theorem, but I'm not sure how.

4 Answers4

6

Binomial expansion version... as $x \to 0^+$, $$ e^x-1 = \left(1 + x +\frac{x^2}{2} + \frac{x^3}{6} +\dots\right) - 1 = x \left(1+\frac{x}{2}+\frac{x^2}{6}+\dots\right) = x(1+S), $$ where $S \to 0$. So $$ \left(e^x-1\right)^{-1/2} = x^{-1/2}\left(1+S\right)^{-1/2} = x^{-1/2}\sum_{k=0}^\infty \binom{-1/2}{k} S^k $$ Then put in what $S$ is (as many terms as needed...)

GEdgar
  • 111,679
5

Related problems: (I), (II). Just find the Taylor series of the function

$$ \frac{\sqrt{x}}{\sqrt{e^{x}-1}}. $$

Added: Here is a formula for the $n$th derivative of the function

$$\left(\frac{\sqrt{x}}{\sqrt{e^{x}-1}}\right)^{(n)}= \frac{\pi}{2}\sum _{k=0}^{n} \sum _{i=0}^{k} \sum _{m=0}^{i}{ \frac { \binom {k}{i}\left[\matrix{i\\m}\right] \left\{\matrix{n\\k}\right\} x^{\frac{1}{2}-m}\, {\rm e}^{(k-i) x} \left( {\rm e}^x - 1 \right)^{i-k-\frac{1}{2}} }{\Gamma \left( \frac{1}{ 2}-k+i \right) \Gamma \left( \frac{3}{2}-m \right) }} .$$

Note: I'll appreciate it if someone can verify this formula with Maple or Mathematica.

3

$\newcommand{\+}{^{\dagger}}% \newcommand{\angles}[1]{\left\langle #1 \right\rangle}% \newcommand{\braces}[1]{\left\lbrace #1 \right\rbrace}% \newcommand{\bracks}[1]{\left\lbrack #1 \right\rbrack}% \newcommand{\ceil}[1]{\,\left\lceil #1 \right\rceil\,}% \newcommand{\dd}{{\rm d}}% \newcommand{\ds}[1]{\displaystyle{#1}}% \newcommand{\equalby}[1]{{#1 \atop {= \atop \vphantom{\huge A}}}}% \newcommand{\expo}[1]{\,{\rm e}^{#1}\,}% \newcommand{\fermi}{\,{\rm f}}% \newcommand{\floor}[1]{\,\left\lfloor #1 \right\rfloor\,}% \newcommand{\half}{{1 \over 2}}% \newcommand{\ic}{{\rm i}}% \newcommand{\iff}{\Longleftrightarrow} \newcommand{\imp}{\Longrightarrow}% \newcommand{\isdiv}{\,\left.\right\vert\,}% \newcommand{\ket}[1]{\left\vert #1\right\rangle}% \newcommand{\ol}[1]{\overline{#1}}% \newcommand{\pars}[1]{\left( #1 \right)}% \newcommand{\partiald}[3][]{\frac{\partial^{#1} #2}{\partial #3^{#1}}} \newcommand{\pp}{{\cal P}}% \newcommand{\root}[2][]{\,\sqrt[#1]{\,#2\,}\,}% \newcommand{\sech}{\,{\rm sech}}% \newcommand{\sgn}{\,{\rm sgn}}% \newcommand{\totald}[3][]{\frac{{\rm d}^{#1} #2}{{\rm d} #3^{#1}}} \newcommand{\ul}[1]{\underline{#1}}% \newcommand{\verts}[1]{\left\vert\, #1 \,\right\vert}$ \begin{align} &{1 \over \root{\expo{x} - 1}} = {1 \over \root{x}} + \pars{{1 \over \root{\expo{x} - 1}} - {1 \over \root{x}}} = {1 \over \root{x}} - {\root{\expo{x} - 1} - \root{x} \over \root{x}\root{\expo{x} - 1}} \\[3mm]&= {1 \over \root{x}} - {\pars{\expo{x} - 1} - x \over \root{x}\root{\expo{x} - 1}\pars{\root{\expo{x} - 1} + \root{x}}} \\[3mm]&= {1 \over \root{x}} - {\expo{x} - 1 - x \over \root{x}\pars{\expo{x} - 1} + x\root{\expo{x} - 1}} = {1 \over \root{x}} - \root{x}\bracks{% {\expo{x} - 1 - x \over x\pars{\expo{x} - 1} + x^{3/2}\root{\expo{x} - 1}}} \end{align}

Also, $$ \lim_{x \to 0^{+}} {\expo{x} - 1 - x \over x\pars{\expo{x} - 1} + x^{3/2}\root{\expo{x} - 1}} = \lim_{x \to 0^{+}} {x^{2}/2 \over x\pars{x} + x^{3/2}\pars{x^{1/2}}} = {1 \over 4} $$

Then, \begin{align} &{1 \over \root{\expo{x} - 1}} = {1 \over \root{x}} - {1 \over 4}\,\root{x} + \root{x}\bracks{% {1 \over 4} - {\expo{x} - 1 - x \over x\pars{\expo{x} - 1} + x^{3/2}\root{\expo{x} - 1}}} \\[3mm]&= {1 \over \root{x}} - {1 \over 4}\,\root{x} + x^{3/2}\ \underbrace{\bracks{% {1 \over 4x} - {1 \over x^{2}}\,{\pars{\expo{x} - 1}/x - 1 \over \pars{\expo{x} - 1}/x + \root{\pars{\expo{x} - 1}/x}}}} _{\ds{\to -\,{1 \over 12}\ \mbox{when}\ x \to 0^{+}}} \end{align}

$$ \color{#0000ff}{\large% {1 \over \root{\expo{x} - 1}} \sim {1 \over \root{x}} - {1 \over 4}\,\root{x} - {1 \over 12}\,x^{3/2}} $$
Felix Marin
  • 89,464
2

At the site https://math.stackexchange.com/a/4657078, it was derived that \begin{equation*} \lim_{x\to0}\Biggl[\sqrt{\frac{\ln(1+x)}{x}}\,\Biggr]^{(n)} =-\sum_{k=0}^n\frac{(2k-3)!!}{(2k)!!} \sum_{m=0}^k(-1)^m\binom{k}{m}\frac{s(n+m,m)}{\binom{n+m}{m}},\quad n\ge0, \end{equation*} where $s(n,k)$ denotes the Stirling numbers of the first kind. Hence, we have \begin{align} \biggl(\sqrt{\frac{x}{\operatorname{e}^x-1}}\,\biggr)^{(n)} &=\Biggl[\sqrt{\frac{\ln(1+u(x))}{u(x)}}\,\Biggr]^{(n)}, \quad u=u(x)=\operatorname{e}^x-1\\ &=\sum_{k=0}^n\Biggl[\sqrt{\frac{\ln(1+u)}{u}}\,\Biggr]^{(k)} B_{n,k}(\operatorname{e}^x,\operatorname{e}^x,\dotsc,\operatorname{e}^x)\\ &=\sum_{k=0}^n\Biggl[\sqrt{\frac{\ln(1+u)}{u}}\,\Biggr]^{(k)} \operatorname{e}^{kx} B_{n,k}(1,1,\dotsc,1)\\ &\to \sum_{k=0}^n\lim_{u\to0}\Biggl[\sqrt{\frac{\ln(1+u)}{u}}\,\Biggr]^{(k)} S(n,k), \quad x\to0\\ &=-\sum_{k=0}^n\Biggl[\sum_{\ell=0}^k\frac{(2\ell-3)!!}{(2\ell)!!} \sum_{m=0}^\ell(-1)^m\binom{\ell}{m}\frac{s(k+m,m)}{\binom{k+m}{m}}\Biggr] S(n,k) \end{align} and \begin{equation} \sqrt{\frac{x}{\operatorname{e}^x-1}}\, =-\sum_{n=0}^\infty\Biggl[\sum_{k=0}^nS(n,k)\sum_{\ell=0}^k\frac{(2\ell-3)!!}{(2\ell)!!} \sum_{m=0}^\ell(-1)^m\binom{\ell}{m}\frac{s(k+m,m)}{\binom{k+m}{m}}\Biggr]\frac{x^n}{n!}, \quad |x|<\pi, \end{equation} where $S(n,k)$ denotes the Stirling numbers of the second kind. Consequently, we arrive at \begin{equation} \frac{1}{\sqrt{|\operatorname{e}^x-1|}}\, =-\frac1{\sqrt{|x|}\,}\sum_{n=0}^\infty\Biggl[\sum_{k=0}^nS(n,k)\sum_{\ell=0}^k\frac{(2\ell-3)!!}{(2\ell)!!} \sum_{m=0}^\ell(-1)^m\binom{\ell}{m}\frac{s(k+m,m)}{\binom{k+m}{m}}\Biggr]\frac{x^n}{n!} \end{equation} for $0\ne|x|<\pi$.

References

  1. Siqintuya Jin, Bai-Ni Guo, and Feng Qi, Partial Bell polynomials, falling and rising factorials, Stirling numbers, and combinatorial identities, Computer Modeling in Engineering & Sciences 132 (2022), no. 3, 781--799; available online at https://doi.org/10.32604/cmes.2022.019941.
  2. Feng Qi, Da-Wei Niu, Dongkyu Lim, and Yong-Hong Yao, Special values of the Bell polynomials of the second kind for some sequences and functions, Journal of Mathematical Analysis and Applications 491 (2020), no. 2, Paper No. 124382, 31 pages; available online at https://doi.org/10.1016/j.jmaa.2020.124382.
  3. Feng Qi, Taylor's series expansions for real powers of two functions containing squares of inverse cosine function, closed-form formula for specific partial Bell polynomials, and series representations for real powers of Pi, Demonstratio Mathematica 55 (2022), no. 1, 710--736; available online at https://doi.org/10.1515/dema-2022-0157.
qifeng618
  • 1,691