From a previous post the following integral arised: $$\int _0^{\infty }\frac{\arctan ^2\left(x\right)\ln ^2\left(1+x^2\right)}{x^2}\:dx$$ And there user178256 linked us to this question where the user M.N.C.E. stated the following:
$$\int _0^{\infty }\frac{\arctan ^2\left(x\right)\ln ^2\left(1+x^2\right)}{x^2}\:dx=\frac{1}{24}\int _0^{\infty }\frac{\ln ^4\left(1+x^2\right)}{x^2}\:dx+\frac{2}{3}\int _0^{\infty }\frac{\arctan ^4\left(x\right)}{x^2}\:dx$$
My question is, how can we prove this relation without evaluating each integral while also avoiding complex numbers?
What I thought of doing is to use the following algebraic identity: $$a^2b^2=\frac{1}{12}\left(a+b\right)^4+\frac{1}{12}\left(a-b\right)^4-\frac{1}{6}a^4-\frac{1}{6}b^4$$
This means that if we set $a=\arctan\left(x\right)$ and $b=\ln\left(1+x^2\right)$ we have: $$\int _0^{\infty }\frac{\arctan ^2\left(x\right)\ln ^2\left(1+x^2\right)}{x^2}\:dx=\frac{1}{12}\int _0^{\infty }\frac{\left(\arctan \left(x\right)+\ln \left(1+x^2\right)\right)^4}{x^2}\:dx$$ $$+\frac{1}{12}\int _0^{\infty }\frac{\left(\arctan \left(x\right)-\ln \left(1+x^2\right)\right)^4}{x^2}\:dx-\frac{1}{6}\int _0^{\infty }\frac{\arctan ^4\left(x\right)}{x^2}\:dx-\frac{1}{6}\int _0^{\infty }\frac{\ln ^4\left(1+x^2\right)}{x^2}\:dx$$ Though I'm having a little bit of trouble getting somewhere with the first $2$ integrals, any help will be well received.