using the principle of cyclicity of remainders for both the numbers i.e. $3$ and $17$ but that is very time consuming and also cumbersome
No, in fact in general it is likely the quickest and easiest method, viz.
$\quad{\rm suppose}\ \ \, N\, = 55^n + 17^n - 72^n_{\phantom{|^|}}\,$ for $\,{\rm\color{#90f}{odd}}\,\ n\ge 1$
$\quad\!\!\bmod 17\!:\ N\,\equiv\, \color{#c00}{4^n}\, +\ 0^n\, -\ \color{#c00}{4^n}\equiv\, 0_{\phantom{|^|}}$
$\quad\!\!\bmod 3\!:\ \ \ N\,\equiv\ 1^n +\ \color{orange}2^n \ -\ 0^n \equiv\, 0\ $ via $\, \color{orange}2^{n}\equiv (\color{orange}{-1})^n\equiv -1\,$ by $\,n\,\ \rm\color{#90f}{odd}$
Remark $ $ More generally we can exploit the innate modular $\:\!\rm\color{#c00}{symmetry}$ as follows
Theorem $\ $ If $\,\ m\mid \color{#c00}{a\!-\!c},\,\ \overline m \mid a\!-\!d\ $ and $\ m,\overline m,b\,$ are pairwise-coprime then
$\qquad\qquad\quad m\overline m\mid a^n\!+b^n\!-c^n\!-d^n\!\iff {\rm lcm}(o_m(d/b),o_{\overline m}(c/b))\mid n$
where $\,o_n(x) :=$ order of $\,x\pmod{\! n}.\,$ For example
$$17\cdot 19\,\mid 20^n+16^n-3^n-1^n \iff {\rm lcm}(\color{c00}2,\color{0a0}2)=2\mid n\qquad$$
See also this proof that $\ 1897\mid 2903^n - 803^n - 464^n + 261^n$.
Using the above Theorem we can easily handle most all "contest" problems enjoying this symmetry. For many worked examples, follow the links (and their links ...).