Given a function space $V$ of some subset of real-valued functions on the real line, linear operator $L: V \rightarrow V$, and $f,g \in V$, define $$ h(t) = \int_{\mathbb{R}}f(u)g(u-t)du $$
Further, assume $h \in V$. Is the below true? $$L(h(t)) = \int_{\mathbb{R}}f(u)L(g(u-t))du $$ If not, under what assumptions is this true? If yes, why?