In the case there your functions are only defined on $[0,\infty)$, you get the following.
Given $f, g: [0,\infty) \to \mathbb{R}^n$, define the convolution
$$
(f*g)(t) = \int_{\tau = 0}^t f(t)g(t-\tau)d\tau = \int_{\tau = 0}^t f(t-\tau)g(t)d\tau .
$$
Let $f, g \in L_2([0,\infty))$ be differentiable, and suppose $\dot{g}\in L_2([0,t_0])$ for any $t_0>0.$ Setting $p = (f*g),$ we have
$$\dot{p}(t) = (f*\dot{g})(t) + f(t) g(0).
$$
To prove this, write
\begin{align*}
\dot{p}(t) & = \lim_{h\to 0} h^{-1}\left[ \int_0^{t+h} f(u) g(t+h-u) du - \int_0^t f(u) g(t-u)du\right] \\
& = \lim_{h\to 0 } \int_0^{t+h} f(u) \frac{g(t+h-u)-g(t-u)}{h} du + \int_t^{t+h} \frac{f(u) g(t-u)}{h} du\\
& = (f*\dot{g})(t) + f(t)g(0),
\end{align*}
where the last equality follows for the first integral by writing the integrand with the mean value theorem as
$f(u) \chi_{[0, t+h]}(u) \dot{g}(\xi)$ for $\xi \in (t-u, t+h-u)$ or
$(t-u, t+h-u)$ and applying Lebesgue Dominated Convergence Theorem, and for the second integral by the Fundamental Theorem of Calculus.