The error
It is true that $\dfrac{\partial z}{\partial r}=e^{i\theta}$ and $\dfrac{\partial z}{\partial\theta}=ire^{i\theta}$.
But even in $\mathbb{R}^{2}\to\mathbb{R}^{2}$, you cannot simply take a reciprocal to flip a partial derivative. See Mark Viola's answer to "Partial derivatives inverse question".
And with $\mathbb{C}$, you can't simply apply the matrix version of the chain rule as in that answer, because you don't immediately have a $2\times2$ matrix with one column corresponding to $\dfrac{\partial}{\partial z}$. To make your approach work out, you'd need to have a version of $\dfrac{\partial}{\partial z}$ that works for functions that aren't complex-differentiable and pair $\dfrac{\partial}{\partial z}$ with something else to make a matrix. And since you started with $\dfrac{\mathrm{d}}{\mathrm{d}z}$ and changed it to $\dfrac{\partial}{\partial z}$, you'd need to pair it with something new that is $0$ when a function is complex-differentiable.
Fixing your approach
It turns out that a nice pair exists in the Wirtinger derivatives $\dfrac{\partial}{\partial z}=\dfrac{1}{2}\left(\dfrac{\partial}{\partial x}-i\dfrac{\partial}{\partial y}\right)$ and $\dfrac{\partial}{\partial\overline{z}}=\dfrac{1}{2}\left(\dfrac{\partial}{\partial x}+i\dfrac{\partial}{\partial y}\right)$, which satisfy things like $\mathrm{d}f=\dfrac{\partial f}{\partial z}\mathrm{d}\left(x+iy\right)+\dfrac{\partial f}{\partial\overline{z}}\mathrm{d}\left(x-iy\right)$.
Then we have (speculatively, at least): $$\begin{bmatrix}\dfrac{\partial z}{\partial r} & \dfrac{\partial z}{\partial\theta}\\
\dfrac{\partial\overline{z}}{\partial r} & \dfrac{\partial\overline{z}}{\partial\theta}
\end{bmatrix}\begin{bmatrix}\dfrac{\partial r}{\partial z} & \dfrac{\partial r}{\partial\overline{z}}\\
\dfrac{\partial\theta}{\partial z} & \dfrac{\partial\theta}{\partial\overline{z}}
\end{bmatrix}=\begin{bmatrix}1 & 0\\
0 & 1
\end{bmatrix}$$
To use this, we first calculate $\dfrac{\partial\overline{z}}{\partial r}=\cos\theta-i\sin\theta=e^{-i\theta}$ and $\dfrac{\partial\overline{z}}{\partial\theta}=-r\sin\theta-ir\cos\theta=r\sin\left(-\theta\right)-ir\cos\left(-\theta\right)$ $=-\left(-r\sin\left(-\theta\right)+ir\cos\left(-\theta\right)\right)=-ire^{-i\theta}$.
$$\begin{bmatrix}e^{i\theta} & ire^{i\theta}\\
e^{-i\theta} & -ire^{-i\theta}
\end{bmatrix}\begin{bmatrix}\dfrac{\partial r}{\partial z} & \dfrac{\partial r}{\partial\overline{z}}\\
\dfrac{\partial\theta}{\partial z} & \dfrac{\partial\theta}{\partial\overline{z}}
\end{bmatrix}=\begin{bmatrix}1 & 0\\
0 & 1
\end{bmatrix}$$
$$\begin{bmatrix}\dfrac{\partial r}{\partial z} & \dfrac{\partial r}{\partial\overline{z}}\\
\dfrac{\partial\theta}{\partial z} & \dfrac{\partial\theta}{\partial\overline{z}}
\end{bmatrix}=\dfrac{1}{e^{i\theta}\left(-ire^{-i\theta}\right)-ire^{i\theta}e^{-i\theta}}\begin{bmatrix}-ire^{-i\theta} & -ire^{i\theta}\\
-e^{-i\theta} & e^{i\theta}
\end{bmatrix}$$
$$\begin{bmatrix}\dfrac{\partial r}{\partial z} & \dfrac{\partial r}{\partial\overline{z}}\\
\dfrac{\partial\theta}{\partial z} & \dfrac{\partial\theta}{\partial\overline{z}}
\end{bmatrix}=\dfrac{i}{2r}\begin{bmatrix}-ire^{-i\theta} & -ire^{i\theta}\\
-e^{-i\theta} & e^{i\theta}
\end{bmatrix}$$
$$\begin{bmatrix}\dfrac{\partial r}{\partial z} & \dfrac{\partial r}{\partial\overline{z}}\\
\dfrac{\partial\theta}{\partial z} & \dfrac{\partial\theta}{\partial\overline{z}}
\end{bmatrix}=\begin{bmatrix}\dfrac{1}{2}e^{-i\theta} & \dfrac{1}{2}e^{i\theta}\\
\dfrac{-ie^{-i\theta}}{2r} & \dfrac{ie^{i\theta}}{2r}
\end{bmatrix}$$
Thus, it seems like $\dfrac{\partial r}{\partial z}=\dfrac{1}{2}e^{-i\theta}$ and $\dfrac{\partial\theta}{\partial z}=\dfrac{1}{2}\dfrac{-ie^{-i\theta}}{r}$, which fixes the factor of $2$ in your calculations.
Another approach
Developing/justifying/using the Wirtinger derivatives is a lot of work just for this problem, so here is a simpler approach to the original problem. Note/recall that the complex derivative equals the derivative taken along any direction (e.g. the $x$ direction), so that we have:
$$\dfrac{\mathrm{d}f}{\mathrm{d}z}=\dfrac{\partial f}{\partial x}=\dfrac{\partial u}{\partial x}+i\dfrac{\partial v}{\partial x}$$
$$=\dfrac{\partial u}{\partial r}\dfrac{\partial r}{\partial x}+\dfrac{\partial u}{\partial\theta}\dfrac{\partial\theta}{\partial x}+i\left(\dfrac{\partial v}{\partial r}\dfrac{\partial r}{\partial x}+\dfrac{\partial v}{\partial\theta}\dfrac{\partial\theta}{\partial x}\right)$$
Now, $r=\sqrt{x^{2}+y^{2}}$, so $\dfrac{\partial r}{\partial x}=\dfrac{x}{\sqrt{x^{2}+y^{2}}}=\dfrac{x}{r}$. And for most points in the plane, we have $\theta=\begin{cases}
\arctan\left(\dfrac{y}{x}\right) & \text{ if }x>0\\
\arctan\left(\dfrac{y}{x}\right)+\pi & \text{ if }x>0\text{ and }y\ge0\\
\arctan\left(\dfrac{y}{x}\right)-\pi & \text{ if }x,y<0
\end{cases}$, so $\dfrac{\partial\theta}{\partial x}=\dfrac{-y/x^{2}}{\left(y/x\right)^{2}+1}=-\dfrac{y}{x^{2}+y^{2}}=-\dfrac{y}{r^{2}}$.
This gives us:
$$\dfrac{\mathrm{d}f}{\mathrm{d}z}=\dfrac{\partial u}{\partial r}\dfrac{x}{r}-\dfrac{\partial u}{\partial\theta}\dfrac{y}{r^{2}}+i\left(\dfrac{\partial v}{\partial r}\dfrac{x}{r}-\dfrac{\partial v}{\partial\theta}\dfrac{y}{r^{2}}\right)$$
And the Cauchy-Riemann equations yield:
$$=\dfrac{\partial u}{\partial r}\dfrac{x}{r}+r\dfrac{\partial v}{\partial r}\dfrac{y}{r^{2}}+i\left(\dfrac{\partial v}{\partial r}\dfrac{x}{r}-r\dfrac{\partial u}{\partial r}\dfrac{y}{r^{2}}\right)$$
$$=\dfrac{\partial u}{\partial r}\dfrac{x-iy}{r}+\dfrac{\partial v}{\partial r}\dfrac{ix+y}{r}$$
$$=\dfrac{x-iy}{r}\left(\dfrac{\partial u}{\partial r}+i\dfrac{\partial v}{\partial r}\right)$$
$$=e^{-\theta}\left(\dfrac{\partial u}{\partial r}+i\dfrac{\partial v}{\partial r}\right)$$