How do i write $\frac{\partial f}{\partial z}$ and $\frac{\partial f}{\partial \bar z}$ in polar form.
From my textbook I know, $$\frac{\partial f}{\partial z} = \frac{e^{-i\theta}}{2} \left(\frac{\partial }{\partial r} - \frac {i}{r} \frac{\partial }{\partial \theta} \right)$$
$$\frac{\partial f}{\partial \bar z} = \frac{e^{i\theta}}{2} \left(\frac{\partial }{\partial r} + \frac {i}{r} \frac{\partial }{\partial \theta} \right)$$
how do i derive these answers?
i know $$ z = re^{i\theta}$$
and, $$ z = u(r,\theta) + iv(r,\theta)$$