In $\mathbb Z[\sqrt{-5}]$ I compute $\langle 2,1+\sqrt{-5} \rangle \langle 3,1+\sqrt{-5} \rangle = \langle 6,2+2\sqrt{-5},3+3\sqrt{-5},-4+2\sqrt{-5} \rangle $
So there must be $a+b\sqrt{-5}\in\mathbb Z[\sqrt{-5}]$ that $(a+b\sqrt{-5})(1-\sqrt{-5})=2+2\sqrt{-5}$ but then we have $b=\frac{2}{3}$ that it's not possible. Am I doing it wrong? How can I prove this?
\langle
and\rangle
instead of $<$ and $>$ yield better formatting. I fixed this. – luxerhia Apr 09 '21 at 13:20