My question: In $\mathbb{Z}[\sqrt{-5}]$, why $(3,\sqrt{-5}-1)(3,\sqrt{-5}+1)=(3)$. My computation figure out $(3,\sqrt{-5}-1)(3,\sqrt{-5}+1)=(3)(3,\sqrt{-5}-1,\sqrt{-5}+1,2)$. $3$ and $2$ are prime numbers, $\sqrt{-5} -1$ and $\sqrt{-5}+1$ are irreducible.
This is just a trivial problem for many people, but it takes me to an ambiguity. Thank all for your help!