Use trig identity: $\sin^2\theta+\cos^2\theta=1$ $$\implies\sin\alpha=\sqrt{1-\cos^2\alpha}=\sqrt{1-\left(\frac{3}{\sqrt{10}}\right)^2}=\frac{1}{\sqrt{10}}\quad \forall \quad 0\le\alpha\le \frac{\pi}{2}$$
$$\implies \sin\beta=\sqrt{1-\cos^2\beta}=\sqrt{1-\left(\frac{2}{\sqrt{5}}\right)^2}=\frac{1}{\sqrt{5}}\quad \forall \quad 0\le\beta\le \frac{\pi}{2}$$
Now, use trig identity
$$\cos(\alpha+\beta)=\cos\alpha\cos\beta-\sin\alpha\sin\beta$$
$$\cos(\alpha+\beta)=\frac{3}{\sqrt {10}}\frac{2}{\sqrt 5}-\frac{1}{\sqrt {10}}\frac{1}{\sqrt 5}
=\frac{1}{\sqrt2}$$
$$\implies \alpha+\beta=\cos^{-1}\frac{1}{\sqrt 2}=\frac{\pi}{4}
\quad \quad\left(\because \cos(\alpha+\beta)\in[-1,1]\right)$$
$$\therefore \cos^{-1}{\frac{3}{\sqrt {10}}} + \cos^{-1}{\frac{2}{\sqrt 5}}= \color{blue}{\frac{\pi}{4}}$$
Or alternatively use trig identity
$$\sin(\alpha+\beta)=\sin\alpha\cos\beta+\cos\alpha\sin\beta$$
$$\sin(\alpha+\beta)=\frac{1}{\sqrt {10}}\frac{2}{\sqrt 5}+\frac{3}{\sqrt {10}}\frac{1}{\sqrt 5}
=\frac{1}{\sqrt2}$$
$$\implies \alpha+\beta=\sin^{-1}\frac{1}{\sqrt 2}=\frac{\pi}{4}
\quad \quad\left(\because \sin(\alpha+\beta)\in[-1,1]\right)$$
$$\therefore \cos^{-1}{\frac{3}{\sqrt {10}}} + \cos^{-1}{\frac{2}{\sqrt 5}}=\color{red}{\frac{\pi}{4}}$$