9

How to calculate $\int_0^1 x^x\,dx$ using series? I read from a book that $$\int_0^1 x^x\,dx = 1-\frac{1}{2^2}+\frac{1}{3^3}+\dots+(-1)^n\frac{1}{(n+1)^{n+1}}+\cdots$$ but I can't prove it. Thanks in advance.

P.S: I found some useful materials here and here.

arax
  • 2,779

1 Answers1

9

Just write $$x^x=e^{x\ln x}=\sum_{n=0}^{\infty}\frac{(x\ln x)^n}{n!}$$ and use that $$\int_0^1(x\ln x)^n dx=\frac{(-1)^n n!}{(n+1)^{n+1}}.$$


To show the last formula, make the change of variables $x=e^{-y}$ so that $$\int_0^1(x\ln x)^n dx=(-1)^{n}\int_0^{\infty}y^ne^{-(n+1)y}dy,$$ which is clearly expressible in terms of the Gamma function.

Start wearing purple
  • 53,234
  • 13
  • 164
  • 223