I came up with this method by myself, so there may be other easier or shorter methods. Enjoy (and don't give up-it does end eventually!).
We begin first with the following $2$ formulae:
$$\frac{\sin x}{x}=\prod_{r=1}^{\infty}\left(1-\frac{x^2}{r^2\pi^2}\right)\tag{1.1}$$
$$\frac{\sinh x}{x}=\prod_{r=1}^{\infty}\left(1+\frac{x^2}{r^2\pi^2}\right).\tag{1.2}$$
Multiplying the $2$ formulae together, we obtain
$$\frac{\sin x \sinh x}{x^2}=\prod_{r=1}^{\infty}\left(1-\frac{x^4}{r^4\pi^4}\right).\tag{1.3}$$
Replace $x$ with $\pi x$.
$$\frac{\sin(\pi x)\sinh(\pi x)}{\pi^2x^2}=\prod_{r=1}^{\infty}\left(1-\frac{x^4}{r^4}\right)=\prod_{r=1}^{\infty}\left(\frac{r^4-x^4}{r^4}\right).\tag{1.4}$$
Take the natural logarithm of both sides and differentiate with respect to $x$. This leads us to
$$\pi\cot(\pi x)+\pi\coth(\pi x)-\frac{2}{x}=\sum_{r=1}^\infty\frac{-4x^3}{r^4-x^4}$$
and therefore
$$\frac{2-\pi x(\cot(\pi x)+\coth(\pi x))}{4x^4}=\sum_{r=1}^{\infty}\frac{1}{r^4-x^4}.\tag{1.5}$$
Before continuing, we need to know the following formula which is obtained in this video:
$$\cot(x+iy)=\frac{\sin2x}{\cosh 2y-\cos2x}-i\frac{\sinh 2y}{\cosh2y-\cos2x}.\tag{1.6}$$
Now we let $x=ze^{i\pi/4}$, so that $x^4=-z^4$:
$$\frac{2-\pi ze^{i\pi/4} (\cot(\pi ze^{i\pi/4})+\coth(\pi ze^{i\pi/4} ))}{-4z^4}=\sum_{r=1}^{\infty}\frac{1}{r^4+z^4}.\tag{1.7}$$
And now let $z=\frac{1}{64^{1/4}}=\frac{\sqrt{2}}{4}$:
$$\frac{\pi \frac{\sqrt2}{4}e^{i\pi/4}(\cot(\pi \frac{\sqrt2}{4}e^{i\pi/4})+\coth(\pi \frac{\sqrt2}{4}e^{i\pi/4} ))-2}{4/64}=\sum_{r=1}^{\infty}\frac{1}{r^4+1/64}=64\sum_{r=1}^{\infty}\frac{1}{64r^4+1}.\tag{1.8}$$
Let's deal with the rather nasty looking expression inside the $\cot$ and $\coth$:
$$\pi \frac{\sqrt2}{4}e^{i\pi/4}=\pi \frac{\sqrt2}{4}\left(\frac{1}{\sqrt 2}+i\frac{1}{\sqrt2}\right)=\frac{\pi}{4}+i\frac{\pi}{4}.$$
So we have
$$\frac{\frac{\pi}{4}(1+i)(\cot(\frac{\pi}{4}+i\frac{\pi}{4})+\coth(\frac{\pi}{4}+i\frac{\pi}{4} ))-2}{4}=\sum_{r=1}^{\infty}\frac{1}{64r^4+1}.\tag{1.9}$$
Now, using equation $(1.6)$ we can see that $$\cot\left(\frac{\pi}{4}+i\frac{\pi}{4}\right)=\frac{1}{\cosh\frac{\pi}{2}}-i\frac{\sinh \frac{\pi}{2}}{\cosh\frac{\pi}{2}}$$
and using the identity $\coth z=i\cot iz$ we can also see that
$$\coth\left(\frac{\pi}{4}+i\frac{\pi}{4}\right)=\frac{\sinh\frac{\pi}{2}}{\cosh\frac{\pi}{2}}-i\frac{1}{\cosh\frac{\pi}{2}}$$
and therefore
$$\cot\left(\frac{\pi}{4}+i\frac{\pi}{4}\right)+\coth\left(\frac{\pi}{4}+i\frac{\pi}{4}\right)=\frac{1+\sinh\frac{\pi}{2}}{\cosh\frac{\pi}{2}}(1-i).\tag{1.10}$$
Substituting this values into equation $(1.9)$ we can see that
$$\sum_{r=1}^{\infty}\frac{1}{64r^4+1}=\frac{\frac{\pi}{4}\frac{1+\sinh\frac{\pi}{2}}{\cosh\frac{\pi}{2}}(1-i)(1+i)-2}{4}\tag{1.11}$$
which simplifies to
$$\sum_{r=1}^{\infty}\frac{1}{64r^4+1}=\frac{\frac{\pi}{2}\frac{1+\sinh\frac{\pi}{2}}{\cosh\frac{\pi}{2}}-2}{4}.\tag{1.12}$$
Now for the final part. Firstly, note that
$$\sum_{r=-\infty}^{\infty}\frac{1}{64r^4+1}=1+2\sum_{r=1}^{\infty}\frac{1}{64r^4+1}.$$
Hence,
$$\sum_{r=-\infty}^{\infty}\frac{1}{64r^4+1}=1+\frac{\frac{\pi}{2}\frac{1+\sinh\frac{\pi}{2}}{\cosh\frac{\pi}{2}}-2}{2}\tag{2.1}$$
and finally
$$\mathbf{\sum_{r=-\infty}^{\infty}\frac{1}{64r^4+1}=\frac{\pi}{4}\frac{1+\sinh(\pi/2)}{\cosh(\pi/2)}}$$
as required!
I hope that was useful. If you have any questions please don't hesitate to ask :) I have enjoyed working this out enormously, thanks for the challenge!!