I want to prove or disprove this problem: If there exist $\lim\limits_{x\rightarrow \infty} (f'(x)+f(x))=L<\infty$ then $\lim\limits_{x\rightarrow\infty} f(x) =L$.
When I assume problem below:
If there exist $\lim\limits_{x\rightarrow\infty} (f'(x)+f(x)) =L<\infty$, There exists $\lim\limits_{x\rightarrow\infty} f(x)$?
I can use mean-value theorem to show that.
So my question is:
If $\lim\limits_{x\rightarrow\infty} (f'(x)+f(x))=L<\infty$, does $\lim\limits_{x\rightarrow\infty} f(x)$ exist?
\lim
in math mode to get $\lim$, and\lim\limits_{x\to\infty}
gives $\lim\limits_{x\to\infty}$.) – Lord_Farin May 31 '13 at 12:27