Some follow up questions related to Two mysterious missing angles in the sine values of acute angle list? .After finding two missing angles, we have a list of 9 sine values for special angles between 0$^\circ$ to $90^\circ$: $\sin \theta =\frac{\sqrt {{2{\pm}\sqrt i}}}{2}, i=0,1,2,3,4 $. (A side note:This formula is easy to remember: start with $\sin 45^\circ=$$\frac{\sqrt2}{2}$, let $\pm \sqrt i$ jump under the radical sign and follow behind 2. Thanks @some guy to remind this trick!)
Now, I have some curious thoughts:
- Why is the formula symmetric about $\theta = 45^\circ$?
- One would naturally want to continue this list with i beyond 4,.. in which case |$\sin \theta$| will not be bounded by [-1,1]. What does this mean? What are those angles? I expect we step into complex numbers, but do not have a clear picture. Can you please help?
\begin{align}\sin 0^\circ =\frac{\sqrt {\color{green}{2-\sqrt {4}}}}{2},\sin 15^\circ =\frac{\sqrt {\color{green}{2-\sqrt3}}}{2},\sin 22.5^\circ =\frac{\sqrt {\color{green}{2-\sqrt2}}}{2} \end{align}
\begin{align}\sin 30^\circ =\frac{\sqrt {\color{green}{2-\sqrt{1}}}}{2} , \sin 45^\circ =\frac{\sqrt {\color{green}{2-\sqrt{0}}}}{2} , \sin 60^\circ =\frac{\sqrt {\color{green}{2+\sqrt{1}}}}{2}\end{align}
\begin{align}\sin 67.5^\circ =\frac{\sqrt {\color{green}{2+\sqrt2}}}{2},\sin 75^\circ =\frac{\sqrt {\color{green}{2+\sqrt 3}}}{2}, \sin 90^\circ =\frac{\sqrt {\color{green}{2+\sqrt{4}}}}{2}\end{align}
\circ
for the degree sign.$\sin 30^\circ$
gives $\sin 30^\circ$ – saulspatz Mar 22 '21 at 16:44