There is a well known list of 5 for trig values of special angles between 0$^o$ to $90^o$:
$\sin 0^o =\frac{\sqrt {\color{blue}{0}}}{2}$, $\sin 30^o =\frac{\sqrt {\color{blue}{1}}}{2}$ , $\sin 45^o =\frac{\sqrt {\color{blue}{2}}}{2}$ , $\sin 60^o =\frac{\sqrt {\color{blue}{3}}}{2}$, $\sin 90^o =\frac{\sqrt {\color{blue}{4}}}{2}$
If wee add 15$^o$ and 75$^o$ , we can make the angles evenly spaced by 15$^o$ and expand the list of 5 to a list of 7:
$\sin 0^o =\frac{\sqrt {\color{blue}{0}}}{2}$,$\sin 15^o =\frac{\sqrt {\color{red}{2-\sqrt3}}}{2}$, $\sin 30^o =\frac{\sqrt {\color{blue}{1}}}{2}$ , $\sin 45^o =\frac{\sqrt {\color{blue}{2}}}{2}$ , $\sin 60^o =\frac{\sqrt {\color{blue}{3}}}{2}$,$\sin 75^o =\frac{\sqrt {\color{red}{2+\sqrt 3}}}{2}$, $\sin 90^o =\frac{\sqrt {\color{blue}{4}}}{2}$
Reformat the list :
$\sin 0^o =\frac{\sqrt {\color{green}{2-\sqrt {4}}}}{2}$,$\sin 15^o =\frac{\sqrt {\color{green}{2-\sqrt3}}}{2}$, $\sin 30^o =\frac{\sqrt {\color{green}{2-\sqrt{1}}}}{2}$
, $\sin 45^o =\frac{\sqrt {\color{green}{2-\sqrt{0}}}}{2}$ , $\sin 60^o =\frac{\sqrt {\color{green}{2+\sqrt{1}}}}{2}$,$\sin 75^o =\frac{\sqrt {\color{green}{2+\sqrt 3}}}{2}$, $\sin 90^o =\frac{\sqrt {\color{green}{2+\sqrt{4}}}}{2}$
Now, we see a nice pattern of $\frac{\sqrt {{2\color{red}{\pm}\sqrt i}}}{2}$ with i=0,1,3,4.
But wait, why is 2 missing from this i list? Seems like we have two special angles lost. With them, we can expand this to list of 9. Where are these two mysterious angles? Can you find them and prove they fit into the pattern? Or, do you find ways to expand this list even further to a list of 11,13,...and find something amazing?