Let $A,B,C,D$ be $n \times n$ real valued matrices such that $$AC-BD=Id$$ and $$AD+BC=O$$ Prove $$CA-DB=Id$$ and $$DA+CB=0$$
One idea that I had is to consider the matrices $A,B,C,D$ as blocks of a larger matrix. Consider the matrix $$\begin{pmatrix} A & -B \\ B & A \end{pmatrix} $$ and $$ \begin{pmatrix} C & D \\ D & -C \end{pmatrix} $$ Then $$\begin{pmatrix} A & -B \\ B & A \end{pmatrix} \begin{pmatrix} C & D \\ D & -C \end{pmatrix} =\begin{pmatrix} Id & O \\ O & - Id \end{pmatrix} $$ So I want to prove $$\begin{pmatrix} C & D \\ D & -C \end{pmatrix} \begin{pmatrix} A & B \\ -B & A \end{pmatrix} = \begin{pmatrix} Id & O \\ O & - Id \end{pmatrix} $$ but I haven't had any luck yet, can you help?