$\textbf{Problem}$
Trying to that $\exp: M_n(\mathbb{C}) \rightarrow GL(n,\mathbb{C})$ is surjective.
$\textbf{Attempt}$
I started by considering a complex matrix A $\in M_n \mathbb{C}$, to this matrix I applied the Jordan normal form so $ A = \lambda I + N $ where $I$ is the identity matrix and $N$ is an upper triangular matrix.
Thus, using the exponential map I get:
$$ M_n \mathbb{C} \rightarrow GL(n \mathbb{C}) \\ A = (\lambda I + N) \mapsto exp(\lambda I + N) $$
Expanding the exponential we get and using the following Jordan Formula:
$\textbf{Jordan Formula:}$
$$\mathbf J=\begin{pmatrix}\lambda&1&&\\&\lambda&\ddots&\\&&\ddots&1\\&&&\lambda\end{pmatrix}$$
$$f(\mathbf A)=\begin{pmatrix}f(\lambda)&f^\prime(\lambda)&\cdots&\frac{f^{(n-1)}(\lambda)}{(n-1)!}\\&f(\lambda)&\ddots&\vdots\\&&\ddots&f^\prime(\lambda)\\&&&f(\lambda)\end{pmatrix}$$
$$exp(\mathbf A)=\begin{pmatrix}exp(\lambda)&exp(\lambda)&\cdots&\frac{exp(\lambda)}{(n-1)!}\\&exp(\lambda)&\ddots&\vdots\\&&\ddots&exp(\lambda)\\&&&exp(\lambda)\end{pmatrix}$$
and I can identify this last matrix as an element of $GL(N, \mathbb C)$? If yes, is this enough to prove the surjectiveness of the map? What am I missing?
Thanks in advance!
Edit:
I used @BenGrossmann and @user1551 hint, so I defined:
$ M = log(\lambda I ) + N $ and $J = \lambda I + N $ then
$\exp(M) = \exp(\log ( \lambda I) + N) = \lambda I \exp(N) $ as N is nilpotent of degree 3 thus $exp(N) \approx I + N + \frac{1}{2} N^2$, I plug this in the above equation and I get:
$$ \exp(M) = \lambda I (\approx I + N + \frac{1}{2} N^2) $$
How can I prove that $\exp(M) = J$ from this?