Prove that $$\left(1+\frac{1}{n}\right)^n<\frac{1}{0!}+\frac{1}{1!}+\frac{1}{2!}+...+\frac{1}{n!}$$ for $n>1 , n \in \mathbb{N}$.

- 53,687

- 203
-
1You will likely learn "somewhere up the road" that what you have on the left-hand side of your inequality is an expression which approaches the number $ \ e \ $ as you let $ \ n \ $ grow to infinity (discovered in Europe first in the context of compound interest in banking), and on the right-hand side, the "Taylor polynomial" which approaches the function $ \ e^x \ $ for $ \ x = 1 \ $ , again as you let the number of terms run to infinity. (In the limit, this becomes an equation.) – colormegone May 28 '13 at 17:59
4 Answers
We have by the binomial identity that \begin{align*} \left(1 + \frac 1n \right)^n &= \sum_{k=0}^n \binom nk \frac 1{n^k}\\ &= \sum_{k=0}^n \frac{n!}{(n-k)! n^k} \cdot \frac 1{k!}\\ &= \sum_{k=0}^n \frac{n \cdot (n-1) \cdots (n-k+1)}{n \cdot n \cdots n} \cdot \frac 1{k!}\\ &\text{now the first factor is $<1$ for $k\ge 2$}\\ &< \sum_{k=0}^n \frac 1{k!} \end{align*} for $n \ge 2$.

- 84,101
Hint: Just expand it using the Binomial Theorem, and use the obvious fact that for $i < n$, $i< n$.

- 68,864
In this answer, and in this answer for $x=1$, it is shown, using the binomial theorem, that for $x\ge0$, $$ \begin{align} \left(1+\frac xn\right)^n &=\sum_{k=0}^n\binom{n}{k}\frac{x^k}{n^k}\\ &=\sum_{k=0}^n\left(\frac{n}{n}\frac{n-1}{n}\frac{n-2}{n}\dots\frac{n-k+1}{n}\right)\frac{x^k}{k!}\\ &\le\sum_{k=0}^n\frac{x^k}{k!} \end{align} $$ where the inequality is strict for $x\gt0$ and $n\gt1$.
Setting $x=1$ gives your result.
The binomial expansion tells you the following $$(1+\frac{1}{n})^n= 1^n + n*1^{n-1}*\frac{1}{n}+\binom{n}{2}*1^{n-2}*(\frac{1}{n})^2 + \cdots +(\frac{1}{n})^n $$ $$= 1+ 1+ \frac{1}{2!}(1-{1\over n}) + \cdots + \frac{1}{n!}(1-\frac{1}{n})(1-\frac{2}{n})\cdots (1 - \frac{n-1}{n})$$ $$\lt 1+1+\frac{1}{2!}+\cdots+\frac{1}{n!} $$
I recommend you to do the calculation to see how it does this, it really helps in the future.

- 5,117
- 4
- 38
- 78
-
1
-
This is a useful way of looking at things when exploring the limit – Mark Bennet Sep 19 '20 at 19:30