In my recent article here at Researchgate on page no 9, I was able to deduce the following two identities from the general result (which I treat it as Theorem 3.2). Those two identities are
$$\frac{2}{\pi}\int_0^{\frac{\pi}{2}}\operatorname{Li}_2\left(\sin^4x\right)dx =\frac{7\pi^2}{12}-\frac{25}{4}\ln^2(2)-4\operatorname{Li}_2\left(\frac{1}{\sqrt 2}\right)+2\operatorname{Li}_2\left(\frac{2-\sqrt 2}{4}\right)-\operatorname{arcsinh}^2(1)+3\ln(2)\operatorname{arcsinh}(1)\approx 0.581222\cdots$$ also
$$\frac{2}{\pi}\int_0^{\frac{\pi}{2}}\operatorname{Li}_2\left(-\sin^4x\right)dx=\operatorname{Li}_2\left(\frac{1-\sqrt 2}{2}\right)+4\operatorname{Li}_2\left(-\sqrt{\frac{1+\sqrt 2}{2}}\right)+\frac{\pi^2}{3}-\frac{19}{4}\ln^2(2)+2\operatorname{Li}_2\left(\frac{\sqrt 2-\sqrt{1+\sqrt 2}}{2\sqrt 2}\right)-\frac{\operatorname{arcsinh}^2(1)}{2}-\ln^2\left(\sqrt {2}+\sqrt{1+\sqrt{2}}\right)-3\ln(2)\ln\left(\sqrt{1+\sqrt 2}-\sqrt {2}\right)\approx -0.32379\cdots$$
These two beautiful identities are the special cases of general result $$\frac{2}{\pi}\int_0^{\frac{\pi}{2}}\operatorname{Li}_2\left(\pm16v\sin^4x\right)=\text{Result of theorem 3.2}$$for all $v\leq 1/16$. However, my interest is to seek an alternative path for both general result as well as those two special cases mentioned above other than technique used in the article. If there are other ways I would be glad to known. Using the same technique one can easily find the closed form for the integral of type $$\displaystyle \frac{2}{\pi}\int_0^{\frac{\pi}{2}}\operatorname{Li}_2\left(\pm256w\sin^8x\right)dx , \;\; |w|\leq 1/256$$