Let $A\in\mathbb{R}^{n\times n}$, $B\in\mathbb{R}^{n\times m}$, and $C\in\mathbb{R}^{m\times n}$. Define \begin{equation} D_1=\begin{bmatrix} A & BC(A+BC) \\ I_n & 0 \end{bmatrix},\qquad D_2=\begin{bmatrix} A+BC & 0 \\ 0 & -CB \end{bmatrix} \end{equation} Show that $D_1$ and $D_2$ have the same nonzero eigenvalues.
My attemp: If we check the claim numerically, we see that the nonzero eigenvalues of $D_1$ and $D_2$ are the same. Probably, there is a factorization of $D_1$, for example $D_1=EF$ such that $D_2=FE$.