The problem:
Using the inequalities
$\sqrt{2\pi n}\left(\frac{n}{e}\right)^{n}e^{\left(\frac{1}{12n}-\frac{1}{360n^{3}}\right)} < n! < \sqrt{2\pi n}\left(\frac{n}{e}\right)^ne^{\frac{1}{12n}}$
show that, for a constant $p$ such that $0<p<1$, where $pn$ is an integer,
$G\left(n, p\right)=\frac{2^{nH\left(p\right)}}{\sqrt{2\pi n p\left(1-p\right)}}$, and $H\left(p\right)$ is the binary entropy function, show that
$G\left(n,p\right)e^{-\frac{1}{12np\left(1-p\right)}}<{n\choose pn} < G\left(n, p\right)$
My work so far:
First I have noted that
${n\choose pn} = \frac{n!}{\left(pn\right)!\left(\left(1-p\right)n\right)!}$
$ \approx \frac{\sqrt{2\pi n} \left( \frac{n}{e} \right)^{n}}{\left(pn\right)!\left(\left(1-p\right)n\right)!}$
$\approx \frac{ \sqrt{2\pi \left(1-p\right)n}\left( \frac{\left(1-p\right)n}{e}\right)^{\left(1-p\right)n}}{2\pi \sqrt{\left(1-2p\right)}\left(\frac{pn}{e}\right)^{pn} \left(\frac{\left(1-2p\right)n}{e}\right)^{\left(1-2p\right)n}} e^\left({\frac{1}{12\left(1-p\right)n}}-\frac{1}{12pn+1}-\frac{1}{12\left(1-2p\right)n+1}\right)$
$\leq 2^{nH\left(p\right)} \frac{e^{\frac{1}{12n}}}{\sqrt{2\pi np\left(1-p\right)}}$
and from here I am not sure where to go. Any hints or help would be greatly appreciated.