Let $0<\alpha <1$ be a real number and $\alpha n$ be an integer. I want to prove the following fact $${n\choose \alpha n}=\frac{1+o(1)}{\sqrt{2\pi \alpha (1-\alpha)n}}2^{nH(\alpha)},$$ where $H(\alpha)=-\alpha \log_2 \alpha -(1-\alpha)\log_2 (1-\alpha)$. To do this, I've used the Stirling's formula for the factorial: $$n!=(\frac{n}{e})^n \sqrt{2\pi n}e^{r(n)},$$ where $1/(12n+1)<r(n)<1/12n$.
What I've tried:
$${n\choose \alpha n}=\frac{n!}{(\alpha n)! ((1-\alpha)n)!}=\frac{(\frac{n}{e})^n \sqrt{2\pi n}e^{r(n)}}{(\frac{\alpha n}{e})^{\alpha n} \sqrt{2\pi \alpha n}e^{r(\alpha n)}(\frac{(1-\alpha)n}{e})^{(1-\alpha)n} \sqrt{2\pi (1-\alpha)n}e^{r((1-\alpha)n)}}\\ \frac{e^{r(n)-r(\alpha n)-r((1-\alpha)n)}}{(\alpha^{\alpha}(1-\alpha)^{(1-\alpha)})^n\sqrt{2\pi \alpha(1-\alpha)n}}=\frac{e^{r(n)-r(\alpha n)-r((1-\alpha)n)}}{\sqrt{2\pi \alpha (1-\alpha)n}}2^{nH(\alpha)}.$$ Now how can I show that $e^{r(n)-r(\alpha n)-r((1-\alpha)n)}=1+o(1)$?
Thanks in advance.