The expression can be reduced as $$|\cos \frac{2\pi}{7} -\cos \frac {\pi}{7} +\cos \frac{4\pi}{7} -\cos \frac{3\pi}{7}+\cdots|$$ $$=|2\sin \frac{\pi}{14}|| \sin \frac{3\pi}{14} + \sin \frac{7\pi}{14} +\sin \frac {11\pi}{14}|$$ $$ =2\sin \frac{\pi}{14} | 1 + 2\sin \frac{\pi}{2} \cos \frac{8\pi}{14}|$$ $$=2[\sin \frac {9\pi}{14} + \sin \frac {\pi}{14}]$$
I don’t think it’s reducible any further, but the given answer is 1. Where am I going wrong?