The harmonic number $H_{n}$ is defined as
\begin{equation*}
H_n=1+\frac12+\frac13+\cdots+\frac1n, \quad n\in\mathbb{N}
\end{equation*}
and satisfies
\begin{equation*}%\label{def-gamma}
\gamma=\lim_{n\to\infty}(H_n-\ln n)=0.57721\dotsc
\end{equation*}
and
\begin{equation*}\label{H-gamma}
H_n=\psi(n+1)+\gamma,
\end{equation*}
where $\gamma$ is the Euler–-Mascheroni constant and $\psi(x)$ is the digamma function which is the logarithmic derivative of the classical Euler gamma function
\begin{equation*}%\label{gamma-dfn}
\Gamma(z)=\int_0^\infty t^{z-1}\textrm{e}^{-t}\textrm{d}\,t, \quad \Re(z)>0.
\end{equation*}
Is the Euler–-Mascheroni constant $\gamma$ irrational? This is a famous but unsolved problem. See https://mathworld.wolfram.com/Euler-MascheroniConstant.html.
On page 257 and page 260 in the handbook [1] below, the formulas 6.1.40 and 6.4.11 read that
\begin{align}\label{ln-gamma-symp-eq}
\ln\Gamma(w)&\sim\biggl(w-\frac12\biggr)\ln w-w+\frac12\ln(2\pi)+\sum_{k=1}^\infty \frac{B_{2k}}{2k(2k-1)w^{2k-1}},\\
\psi(w)&\sim\ln w-\frac{1}{2w}-\sum_{k=1}^\infty \frac{B_{2k}}{2kw^{2k}},\label{ln-psi-symp-eq}
\end{align}
and
\begin{equation}\label{asymptotic-polypsi}
\psi^{(n)}(w)\sim(-1)^{n-1}\biggl[\frac{(n-1)!}{w^n}+\frac{n!}{2w^{n+1}}+\sum_{k=1}^\infty B_{2k}\frac{(2k+n-1)!}{(2k)!w^{2k+n}}\biggr]
\end{equation}
as $w\to\infty$ in $\lvert \arg w\rvert<\pi$ for $n\in\mathbb{N}$, where $B_{2k}$ for $k\ge1$ are known as the Bernoulli numbers which can be generated by
\begin{equation*}%\label{Bernoulli-numbers-dfn}
\frac{w}{e^w-1}=1-\frac{w}2+\sum_{k=1}^\infty B_{2k}\frac{w^{2k}}{(2k)!}, \quad| w| <2\pi.
\end{equation*}
See https://math.stackexchange.com/a/4254493/945479, https://math.stackexchange.com/a/4256893/945479, and https://math.stackexchange.com/a/4248341/945479.
References
- M. Abramowitz and I. A. Stegun (Eds), Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, National Bureau of Standards, Applied Mathematics Series 55, Reprint of the 1972 edition, Dover Publications, Inc., New York, 1992.
- Bai-Ni Guo and Feng Qi, Sharp inequalities for the psi function and harmonic numbers, Analysis---International mathematical journal of analysis and its applications 34 (2014), no. 2, 201--208; available online at https://doi.org/10.1515/anly-2014-0001.
- Da-Wei Niu, Yue-Jin Zhang, and Feng Qi, A double inequality for the harmonic number in terms of the hyperbolic cosine, Turkish Journal of Analysis and Number Theory 2 (2014), no. 6, 223--225; available online at https://doi.org/10.12691/tjant-2-6-6.
- N. M. Temme, Special Functions: An Introduction to Classical Functions of Mathematical Physics, A Wiley-Interscience Publication, John Wiley & Sons, Inc., New York, 1996; available online at http://dx.doi.org/10.1002/9781118032572.