In theory, if obtaning a closed-form formula of the Bernoulli polynomials $B_n(x)$, one can compute the ratio $\frac{B_{j+1}(x)}{B_j(x)}$ and its properties, including its asymptotic behaviours, its bounds, and its recursive relations.
In the paper [2], the Bernoulli polynomials $B_n(x)$ were determinantally expressed as
\begin{equation}
B_n(x)=\frac{(-1)^n}{(n-1)!}
\begin{vmatrix}
1 & x & x^2 & x^3 & \dotsm & x^{n-1} & x^n\\
1 & \frac12 & \frac13 & \frac14 & \dotsm & \frac1n & \frac1{n+1}\\
0 & 1 & 1 & 1 & \dotsm & 1 & 1\\
0 & 0 & 2 & 3 & \dotsm & n-1 & n\\
0 & 0 & 0 & \binom32 & \dotsm & \binom{n-1}2 & \binom{n}2\\
\vdots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots\\
0 & 0 & 0 & 0 & \dotsm & \binom{n-1}{n-2} & \binom{n}{n-2}
\end{vmatrix}, \quad n\in\mathbb{N}.
\end{equation}
In the paper [1] below, the Bernoulli polynomials $B_n(x)$ were represented as
\begin{align*}
B_n(x)&=(-1)^nn!
\begin{vmatrix}
1 & 1 & 0 & 0 & 0 & 0 & \dotsm & 0\\
\frac{x}{1!} & \frac1{2!} & 1 & 0 & 0 & 0 & \dotsm & 0\\
\frac{x^2}{2!} & \frac1{3!} & \frac1{2!} & 1 & 0 & 0 & \dotsm & 0\\
\frac{x^3}{3!} & \frac1{4!} & \frac1{3!} & \frac1{2!} & 1 & 0 & \dotsm & 0\\
\dotsm & \dotsm & \dotsm & \dotsm & \dotsm & \dotsm & \dotsm & \dotsm\\
\frac{x^n}{n!} & \frac1{(n+1)!} & \frac1{n!} & \frac1{(n-1)!} & \frac1{(n-2)!}&\frac1{(n-3)!}&\dotsm& 1
\end{vmatrix}\\
&=(-1)^n\frac{n!}{\prod_{k=1}^nk!}
\begin{vmatrix}
1 & 1 & 0 & 0 & 0 & 0 & \dotsm & 0\\
x & \frac1{2!} & 1 & 0 & 0 & 0 & \dotsm & 0\\
x^2 & \frac{2!}{3!} & 1 & 2! & 0 & 0 & \dotsm & 0\\
x^3 & \frac{3!}{4!} & 1 & \frac{3!}{2!} & 3! & 0 & \dotsm & 0\\
\dotsm & \dotsm & \dotsm & \dotsm & \dotsm & \dotsm & \dotsm & \dotsm\\
x^n & \frac{n!}{(n+1)!} & 1 & \frac{n!}{(n-1)!} & \frac{n!}{(n-2)!}&\frac{n!}{(n-3)!}&\dotsm& n!
\end{vmatrix}\\
&=(-1)^n\prod_{k=1}^{n-1}\frac{(k-1)!}{k!}
\begin{vmatrix}
1 & 1 & 0 & 0 & 0 & 0 & \dotsm & 0\\
x & \frac1{2!} & 1 & 0 & 0 & 0 & \dotsm & 0\\
x^2 & \frac{2!}{3!} & 1 & 2! & 0 & 0 & \dotsm & 0\\
x^3 & \frac{3!}{4!} & 1 & \frac{3!}{2!} & \frac{3!}{2!} & 0 & \dotsm & 0\\
\dotsm & \dotsm & \dotsm & \dotsm & \dotsm & \dotsm & \dotsm & \dotsm\\
x^n & \frac{n!}{(n+1)!} & 1 & \frac{n!}{(n-1)!} & \frac{n!}{(n-2)!2!}&\frac{n!}{(n-3)!3!}&\dotsm& \frac{n!}{2!(n-2)!}
\end{vmatrix}.
\end{align*}
In the paper [4], the Bernoulli polynomials $B_n(x)$ was explicitly expressed as
\begin{multline}\label{BP-Stirl-form}
B_n(x)=\sum_{k=1}^nk!\sum_{r+s=k}\sum_{\ell+m=n}(-1)^m\binom{n}{\ell} \frac{\ell!}{(\ell+r)!}\frac{m!}{(m+s)!}\\
\times\Biggl[\sum_{i=0}^r\sum_{j=0}^s(-1)^{i+j}\binom{\ell+r}{r-i}\binom{m+s}{s-j}S(\ell+i,i)S(m+j,j)\Biggr]x^{m+s}(1-x)^{\ell+r}
\end{multline}
and was determinantally represented as
\begin{equation}\label{Bern-Polyn-determ}
B_n(x)=(-1)^n\biggl|\frac1{\ell+1}\binom{\ell+1}{m} \bigl[(1-x)^{\ell-m+1}-(-x)^{\ell-m+1}\bigr]\biggr|_{1\le \ell\le n,0\le m\le n-1}
\end{equation}
for $n\in\mathbb{N}$, where $S(n,k)$ denotes the Stirling numbers of the second kind and $|\cdot|_{1\le \ell\le n,0\le m\le n-1}$ denotes a $n\times n$ determinant.
In the paper [5], an alternative determinantal expression
\begin{equation}\label{Bernoulli-Polyn-Det-Erew}
B_n(x)=\frac{(-1)^n}{(n+1)!}
\begin{vmatrix}
1&1&0&0&\dotsm&0&0&0\\
\frac{x}2&\binom{2}0&\frac12&0&\dotsm&0&0&0\\
\frac{x^2}3&\binom{3}0&\binom{3}1&\frac13&\dotsm&0&0&0\\
\frac{x^3}4&\binom{4}0&\binom{4}1&\binom{4}2&\dotsm&0&0&0\\
\vdots&\vdots&\vdots&\vdots&\ddots&\vdots&\vdots&\vdots\\
\frac{x^{n-2}}{n-1}&\binom{n-1}0&\binom{n-1}1&\binom{n-1}2&\dotsm &\binom{n-1}{n-3}&\frac1{n-1}&0\\
\frac{x^{n-1}}{n}&\binom{n}0&\binom{n}1&\binom{n}2&\dotsm &\binom{n}{n-3}&\binom{n}{n-2}&\frac1{n}\\
\frac{x^n}{n+1}&\binom{n+1}0&\binom{n+1}1&\binom{n+1}2&\dotsm &\binom{n+1}{n-3}&\binom{n+1}{n-2}&\binom{n+1}{n-1}
\end{vmatrix}, \quad n\ge0
\end{equation}
for the Bernoulli numbers $B_n(x)$ was derived.
Theorem 1.1 in [3] reads that, for all integers $n,r\ge0$, the Bernoulli polynomials $B_n(r)$ can be computed in terms of the $r$-Stirling numbers of the second kind $S_r(n,k)$ by
\begin{equation}\label{Bernoulli-Poly-r-Stirling-eq}
B_n(r)=\sum_{k=0}^n(-1)^k\frac{k!}{k+1}S_r(n,k).
\end{equation}
I think that, by these closed-form formulas of the Bernoulli polynomials $B_n(x)$, it is not much hard to confirm that the ratio $\frac{B_{j+1}(x)}{B_j(x)}$ cannot be bounded as $j\to+\infty$.
References
- R. Booth and H. D. Nguyen, Bernoulli polynomials and Pascal's square, Fibonacci Quart. 46/47 (2008/2009), no. 1, 38--47.
- F. Costabile, F. Dell'Accio, M. I. Gualtieri, A new approach to Bernoulli polynomials, Rend. Mat. Appl. (7) 26 (2006), no. 1, 1--12.
- B.-N. Guo, I. Mezo, and F. Qi, An explicit formula for the Bernoulli polynomials in terms of the $r$-Stirling numbers of the second kind, Rocky Mountain J. Math. 46 (2016), no. 6, 1919--1923; available online at https://doi.org/10.1216/RMJ-2016-46-6-1919.
- F. Qi and R. J. Chapman, Two closed forms for the Bernoulli polynomials, J. Number Theory 159 (2016), 89--100; available online at https://doi.org/10.1016/j.jnt.2015.07.021.
- F. Qi and B.-N. Guo, Some determinantal expressions and recurrence relations of the Bernoulli polynomials, Mathematics 4 (2016), no. 4, Article 65, 11 pages; available online at https://doi.org/10.3390/math4040065.