$(\mathbb{R}_l, \tau)$ : lower limit topology.
I wonder whether $\mathbb{R}_l \times \mathbb{R}_l$ is separable. In my opinion, it is true since $\mathbb{Q} \times \mathbb{Q}$ is dense in $\mathbb{R}_l \times \mathbb{R}_l$:
(sketch of proof) let $W$ be a open set containing $(q_1,q_2) \in \mathbb{Q} \times \mathbb{Q}$. Then there are basic (open) sets $U=[a, a+r_a)$ and $V=[b, b+r_b)$ such that $q_1 \in U$, $q_2 \in V$. This means $W$ contains another rational pair, namely $(q_3,q_4)$. $\Box$
Please let me know if there are any errors.