Please help prove
$$ \begin{align} \frac{\pi}{2}&=\left(\frac{1}{2}\right)^{2/1}\left(\frac{2^{2}}{1^{1}}\right)^{4/(1\cdot 3)}\left(\frac{1}{4}\right)^{2/3}\left(\frac{2^{2}\cdot4^{4}}{1^{1}\cdot3^{3}}\right)^{4/(3\cdot 5)}\left(\frac{1}{6}\right)^{2/5}\left(\frac{2^{2}\cdot4^{4}\cdot6^{6}}{1^{1}\cdot3^{3}\cdot5^{5}}\right)^{4/(5\cdot 7)}\cdots\\[5pt] &=\prod_{n=1}^{\infty}\left(\frac{1}{2n}\right)^{\frac{2}{2n-1}}\left(\prod_{k=1}^{n}\frac{\left(2k\right)^{2k}}{\left(2k-1\right)^{2k-1}}\right)^{\frac{4}{\left(2n-1\right)\left(2n+1\right)}} \end{align} $$
Here's my progress
$$ \begin{align} \frac{\pi}{2}&=\prod_{n=1}^{\infty}\left(\frac{1}{2n}\right)^{\frac{2}{2n-1}}\left(\prod_{k=1}^{n}\frac{\left(2k\right)^{2k}}{\left(2k-1\right)^{2k-1}}\right)^{\frac{4}{\left(2n-1\right)\left(2n+1\right)}}\\[5pt] &=\prod_{n=1}^{\infty}\left(\frac{1}{2n}\right)^{\frac{2}{2n-1}}\left(\prod_{k=1}^{n}\frac{\left(2k\right)^{2k}}{\left(2k-1\right)^{2k-1}}\right)^{\frac{2}{2n-1}-\frac{2}{2n+1}}\\[5pt] &=\lim\limits_{m\to\infty}\frac{\prod_{n=1}^{m}\left(\frac{1}{2n}\right)^{\frac{2}{2n-1}}\left(\prod_{k=1}^{n}\frac{\left(2k\right)^{2k}}{\left(2k-1\right)^{2k-1}}\right)^{\frac{2}{2n-1}}}{\left(\prod_{k=1}^{m}\frac{\left(2k\right)^{2k}}{\left(2k-1\right)^{2k-1}}\right)^{\frac{2}{2m+1}}\prod_{n=2}^{m}\left(\prod_{k=1}^{n-1}\frac{\left(2k\right)^{2k}}{\left(2k-1\right)^{2k-1}}\right)^{\frac{2}{2n-1}}}\\[5pt] &=\lim\limits_{m\to\infty}\frac{\prod_{n=1}^{m}\left(\frac{1}{2n}\right)^{\frac{2}{2n-1}}\left(\frac{\left(2n\right)^{2n}}{\left(2n-1\right)^{2n-1}}\right)^{\frac{2}{2n-1}}}{\left(\prod_{k=1}^{m}\frac{\left(2k\right)^{2k}}{\left(2k-1\right)^{2k-1}}\right)^{\frac{2}{2m+1}}}\\[5pt] &=\lim\limits_{m\to\infty}\frac{\left(\prod_{n=1}^{m}\frac{2n}{2n-1}\right)^{2}}{\left(\prod_{k=1}^{m}\frac{\left(2k\right)^{2k}}{\left(2k-1\right)^{2k-1}}\right)^{\frac{2}{2m+1}}}\\[5pt] &=\lim\limits_{m\to\infty}\frac{\pi\left(\frac{\Gamma(m+1)}{\Gamma(m+\frac12)}\right)^{2}}{\left(\prod_{k=1}^{m}\frac{\left(2k\right)^{2k}}{\left(2k-1\right)^{2k-1}}\right)^{\frac{1}{m}}}\\[5pt] \iff \frac12&=\lim\limits_{m\to\infty}\frac{\left(\frac{\Gamma(m+1)}{\Gamma(m+\frac12)}\right)^{2}}{\left(\prod_{k=1}^{m}\frac{\left(2k\right)^{2k}}{\left(2k-1\right)^{2k-1}}\right)^{\frac{1}{m}}} \end{align} $$
I'm stuck here for now.
Edit: Drawing from this post we apparently just need to show that
$$\left(\prod_{k=1}^{m}\frac{\left(2k\right)^{2k}}{\left(2k-1\right)^{2k-1}}\right)^{\frac{1}{m}}\sim 2m$$