I am trying to write the Wallis Product (WP) using the $\Gamma$ function, thereby hoping for either a new identity or a simple derivation of the formula, but I get a result I am not sure its correct.
This is the WP
$$ \frac{\pi}{2} = \frac{2}{1}\frac{2}{3}\frac{4}{3}\frac{4}{5}\frac{6}{5}\frac{6}{7}\cdots\frac{2n}{2n-1}\frac{2n}{2n+1}\cdots $$
Now $$ \frac{2}{1}\frac{2}{3}\frac{4}{3}\frac{4}{5}\frac{6}{5}\frac{6}{7}\cdots\frac{2n}{2n-1}\frac{2n}{2n+1}\cdots = \frac{2\cdot2\cdot4\cdot4\cdot6\cdot6\cdot \dots\ (2n)(2n)}{1\cdot1\cdot3\cdot3\cdot5\cdot5\cdot\dots\ (2n-1)(2n-1)(2n+1)}\cdots $$
$$=\frac{1\cdot2\cdot1\cdot2\cdot2\cdot2\cdot2\cdot2\cdot3\cdot2\cdot3\cdot2\cdot \hspace{12pt} \dots\hspace{12pt}n\cdot2\hspace{12pt}\cdot\hspace{12pt} n\cdot2\hspace{24pt}}{\frac{1}{2}\cdot2\cdot\frac{1}{2}\cdot2\cdot\frac{3}{2}\cdot2\cdot\frac{3}{2}\cdot2\cdot\frac{5}{2}\cdot2\cdot\frac{5}{2}\cdot2\cdot\dots\ (n-\frac{1}{2})\cdot2\cdot(n-\frac{1}{2})\cdot2\cdot(2n+1)}\cdots $$
$$=\frac{1\cdot1\cdot2\cdot2\cdot3\cdot3\cdot \hspace{12pt} \dots\hspace{12pt}n\hspace{12pt}\cdot\hspace{12pt} n\hspace{24pt}}{\frac{1}{2}\cdot\frac{1}{2}\cdot\frac{3}{2}\cdot\frac{3}{2}\cdot\frac{5}{2}\cdot\frac{5}{2}\cdot\dots\ (n-\frac{1}{2})\cdot(n-\frac{1}{2})\cdot(2n+1)}\cdots $$
$$=\big(\frac{1\cdot2\cdot3\cdot\ \dots\ n\hspace{24pt}}{\frac{1}{2}\cdot\frac{3}{2}\cdot\frac{5}{2}\cdot\dots\ (n-\frac{1}{2})\cdot\sqrt{2n+1}}\cdots\big)^2 $$
$$ = \lim_{n\rightarrow\infty}\;\;\Bigg(\frac{\Gamma{(n+1)}}{\frac{\Gamma{(n+\frac{1}{2})}}{\sqrt{\pi}}}\Bigg)^2\frac{1}{(2n+1)}$$
$$=\lim_{n\rightarrow\infty}\;\; \frac{\pi}{2n+1}\Big(\frac{\Gamma{(n+1)}}{\Gamma{(n+\frac{1}{2})}}\Big)^2$$
$$= \frac{\pi}{2}\lim_{n\rightarrow\infty}\; \frac{1}{n}\Big(\frac{\Gamma{(n)}}{\Gamma{(n-\frac{1}{2})}}\Big)^2.$$
Question 1) Is this a correct fully equivalent reformulation of rhs of WP?
When using WP we would get:
$$\frac{\pi}{2} = \frac{\pi}{2}\lim_{n\rightarrow\infty}\; \frac{1}{n}\Big(\frac{\Gamma{(n)}}{\Gamma{(n-\frac{1}{2})}}\Big)^2,$$
$$\lim_{n\rightarrow\infty}\; \frac{1}{n}\Big(\frac{\Gamma{(n)}}{\Gamma{(n-\frac{1}{2})}}\Big)^2 = 1,$$ which implies
$$\frac{\Gamma(n)}{\Gamma(n-\frac{1}{2})} \overset{n\rightarrow \infty}{\longrightarrow} \sqrt{n}. \tag{1}$$
Alternatively if (1) is known otherwise (e.g. from the Sterling approximation (Question 2) Is it possible to derive (1) from the Sterling approximation or from any other elementary considerations?)) one could derive the WP easily from that.
Question 3) Is this conclusion correct?