Background: Let $$V:=\{A\in M_{3\times 3}(\mathbb{R}):\text{trace}(A)=0\}$$ be the vector space of $3\times 3$ real matrices with vanishing trace, and let $[\cdot,\cdot]:V\times V\to V$ be defined by $$[A,B]=AB-BA$$ Note that this is well defined since $\text{trace}(AB-BA)=\text{trace}(AB)-\text{trace}(AB)=0$ for any matrices $A,B$. Finally, let $$\hat{V}:=\text{span}\{[A,B]:A,B\in V\}$$
Question: I have to give an isomorphism $$\varphi:(V,[\cdot,\cdot])\to(\hat{V},[\cdot,\cdot]),$$ i.e. a bijective map such that $\varphi([A,B])=[\varphi(A),\varphi(B)]$, $\forall A,B\in V$.
I am aware that this is related to Lie algebra; namely $V=\mathfrak{sl}(3,\mathbb{R})$. However, I did not study Lie algebra yet. I am suppose to be able to prove it without referring to any well-known theorem of Lie algebra (unless I prove it first).
I used a very computational argument. I am wondering if
- My argument is correct.
- There is a more fundamental way to prove it, i.e. without having to tediously compute all possible $[X_i,X_j]$ from a given basis.
Atempt: Let
$$ X_1 = \left( \begin{array}{ccc} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 0 \end{array} \right),\quad X_2 = \left( \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & -1 \end{array} \right),\quad X_3 = \left( \begin{array}{ccc} 0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{array} \right),$$ $$\quad X_4 = \left( \begin{array}{ccc} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{array} \right),\quad X_5 = \left( \begin{array}{ccc} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{array} \right),\quad X_6 = \left( \begin{array}{ccc} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{array} \right),$$ $$\quad X_7 = \left( \begin{array}{ccc} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 1 & 0 & 0 \end{array} \right),\quad X_8 = \left( \begin{array}{ccc} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 1 & 0 \end{array} \right) $$ Then, $\{X_1,\ldots,X_8\}$ forms a basis for $V$, and we find $$[X_1,X_2]=0,\quad[X_1,X_3]=2X_3,\quad[X_1,X_4]=X_4,\quad[X_1,X_5]=-X_5$$ $$[X_1,X_6]=-2X_6,\quad[X_1,X_7]=-X_7,\quad[X_1,X_8]=X_8,\quad[X_2,X_3]=X_3$$ $$[X_2,X_4]=2X_4,\quad[X_2,X_5]=X_5,\quad[X_2,X_6]=-X_6,\quad[X_2,X_7]=-2X_7$$ $$[X_2,X_8]=-X_8,\quad[X_3,X_4]=0,\quad[X_3,X_5]=X_4,\quad[X_3,X_6]=X_1$$ $$[X_3,X_7]=-X_8,\quad[X_3,X_8]=0,\quad[X_4,X_5]=0,\quad[X_4,X_6]=-X_5$$ $$[X_4,X_7]=X_2,\quad[X_4,X_8]=X_3,\quad[X_5,X_6]=0,\quad[X_5,X_7]=X_6$$ $$[X_5,X_8]=X_2-X_1,\quad[X_6,X_7]=0,\quad[X_6,X_8]=-X_7,\quad[X_7,X_8]=0$$ Thus, we have $$ \begin{array}{cccc} X_1=[X_3,X_6],& X_2=[X_4,X_7],& X_3=[X_2,X_3],& X_4=[X_1,X_4] \\ X_5=[X_2,X_5],& X_6=[X_5,X_7],& X_7=[X_7,X_1],& X_8=[X_7,X_3] \end{array} $$ which shows that $V$ is a subspace of $\hat{V}$, and since $\hat{V}$ is clearly a subspace of $V$, then $V$ and $\hat{V}$ are in fact the same vector space. Thus, we can take $\varphi$ to be simply the inclusion map. Indeed, $\varphi$ is then clearly bijective and we have $$\varphi([A,B])=[A,B]=[\varphi(A),\varphi(B)]$$