Let $A,B$ be $n\times n$ real matrices such that $A^2$ is positive-definite and $B$ is symmetric. Show that $A^2-B$ is positive-definite if and only if $A^{-1}BA^{-1}$ has all eigenvalues $<1$.
If we choose invertible matrix $P$ such that $P'(A^2)P=I_n$, then $A^2-B$ is positive-definite implies $P'(A^2-B)P=I-P'BP$ is positive-definite, and eigenvalues of $P'BP$ is $<1$. But it is inconsistent with $|P' A(x I-A^{-1}BA^{-1})AP|=|x P'P-P'BP|$. If $P$ is orthogonal, OK then. However, ...