Let $ n\in\mathbb{N} $, first of all, we wanna factor the polynomial $ X^{2n}-1 $, it has $ 2n-1 $ zeros which are $ \mathrm{e}^{\mathrm{i}\frac{k\pi}{n}} ,\ k\in\left[\!\left[0,2n-1\right]\!\right] $. Thus : \begin{aligned}X^{2n}-1=\prod_{k=0}^{2n-1}{\left(X-\mathrm{e}^{\mathrm{i}\frac{k\pi}{n}}\right)}&=\left(X-1\right)\prod_{k=1}^{n-1}{\left(X-\mathrm{e}^{\mathrm{i}\frac{k\pi}{n}}\right)}\left(X+1\right)\prod_{k=n+1}^{2n-1}{\left(X-\mathrm{e}^{\mathrm{i}\frac{k\pi}{n}}\right)}\\ &=\left(X^{2}-1\right)\prod_{k=1}^{n}{\left(X-\mathrm{e}^{\mathrm{i}\frac{k\pi}{n}}\right)}\prod_{k=1}^{n-1}{\left(X-\mathrm{e}^{\mathrm{i}\frac{\left(2n-k\right)\pi}{n}}\right)}\\ &=\left(X^{2}-1\right)\prod_{k=1}^{n}{\left(X-\mathrm{e}^{\mathrm{i}\frac{k\pi}{n}}\right)\left(X-\mathrm{e}^{-\mathrm{i}\frac{k\pi}{n}}\right)}\\ X^{2n}-1&=\left(X^{2}-1\right)\prod_{k=1}^{n-1}{\left(X^{2}-2X\cos{\left(\frac{k\pi}{n}\right)}+1\right)}\end{aligned}
Hence, if $ r\in\left(-1,1\right) $, we have : $$ \prod_{k=1}^{n-1}{\left(r^{2}-2r\cos{\left(\frac{k\pi}{n}\right)}+1\right)}=\frac{r^{2n}-1}{r^{2}-1} $$
Using Riemann sum theorem, we have the following : \begin{aligned}\int_{0}^{\pi}{\ln{\left(r^{2}-2r\cos{x}+1\right)}\,\mathrm{d}x}&=\lim_{n\to +\infty}{\frac{\pi}{n}\sum_{k=0}^{n-1}{\ln{\left(r^{2}-2r\cos{\left(\frac{k\pi}{n}\right)}+1\right)}}}\\ &=\lim_{n\to +\infty}{\left(\frac{2\pi}{n}\ln{\left(1-r\right)}+\frac{\pi}{n}\ln{\left(\prod_{k=1}^{n-1}{\left(r^{2}-2r\cos{\left(\frac{k\pi}{n}\right)}+1\right)}\right)}\right)}\\ &=\lim_{n\to +\infty}{\left(\frac{2\pi}{n}\ln{\left(1-r\right)}+\frac{\pi}{n}\ln{\left(\frac{1-r^{2n}}{1-r^{2}}\right)}\right)}\\ \int_{0}^{\pi}{\ln{\left(r^{2}-2r\cos{x}+1\right)}\,\mathrm{d}x}&=0\end{aligned}