7

If $r \in \Bbb R$ how to integrate $\displaystyle \int_0^{\pi} \log ( 1 - 2 r \cos \theta + r^2)d\theta$?

I need some hints. Special case, if $r = 1$ then I know the above integral is zero.

Here is my working \begin{align*} \int_0^{\pi}\log (1 - 2 r \cos \theta + r^2)d\theta &= \int_0^\pi\log ((1 - re^{i \theta})(1 -re^{-i\theta} )) d\theta\\ &= \int_0^\pi \log(1 - r e^{i\theta})d\theta + \int_0^\pi\log(1 - re^{-i\theta})d\theta\\ &= \int_0^{2\pi} \log( 1 - re^{i\theta})d\theta \\ &= 0 \end{align*}

Mula Ko Saag
  • 2,177
  • 1
  • 23
  • 45

2 Answers2

6

Two hints:

  1. The integrand is an even function of $\theta$ $\Rightarrow$ the integral can be written as $\frac12\int_0^{2\pi}$.
  2. $1-2r\cos\theta+r^2=(1-re^{i\theta})(1-re^{-i\theta})$.
Start wearing purple
  • 53,234
  • 13
  • 164
  • 223
2

Hint: Note that when $r<1$ this is the real part of $$\frac12 \int_{|z|=r} \log(1-z)^2\,\frac{dz}{iz}$$ for the usual branch of $\log$. When $r>1$, you're going to need to make a branch cut.

Ted Shifrin
  • 115,160