Suppose that $R$ is a PID and that $\mathcal{I}$ is an an ideal. Then $\mathcal{I}$ is maximal iff for any $x$ generating $\mathcal{I}$, $x$ is irreducible.
Proof: $\Rightarrow$: Suppose $\mathcal{I}$ is maximal and that $\mathcal{I}$ is generated by $x$. Write $x = ab$ for some $a,b\in R$. Since $a|x$, $\mathcal{I}$ must be a subset of the ideal generated by $a$. Were this inclusion to be proper, by the maximality of $\mathcal{I}$, we would have $R$ being generated by $a$. This make $a$ a unit. By symmetry, $a$ or $b$ is a unit. We conclude that $x$ is irreducible.
$\Leftarrow$:
Suppose that $x$ is irreducible. If $x$ is not a unit, there is a maximal ideal $\mathcal{I}$ of $R$ with $x\in\mathcal{I}$. Since $R$ is a PID, we can choose $y\in R$ so that $\mathcal{I}$ is generated by $y$. Since $x\in \mathcal{I}$, $y|x$. Write $x = ay$ for some $y\in R$. Since $x$ is irreducible $a$ is a unit. Hence $x$ and $y$ generate the same ideal; this ideal is maximal.