Hint $\,\ (a_1,\ldots,a_j) \subseteq (b_1,\ldots,b_k)\!\!\overset{\rm\color{#c00}{U}\!\!}\iff a_1,\ldots,a_j \in (b_1,\ldots,b_k)\iff $
$$\iff \begin{bmatrix} a_1\\ \vdots\\ a_j\end{bmatrix}\,=\,\begin{bmatrix}c_{11} &\ldots &c_{1k}\\ \vdots &\ddots & \vdots\\ c_{j1}&\ldots &c_{jk} \end{bmatrix}\begin{bmatrix} b_1\\ \vdots\\ b_k\end{bmatrix}\ \ \text{for some }\ c_{i,j}\in R$$
OP is case $\, j = 1 = k,\ $ i.e. $\ a_1 = c\, b_1\ $ for some $\ c\in R,\ $ i.e. $\ b_1\!\mid a_1,\, $ i.e.
$$\quad\ (b_1)\supseteq (a_1) \iff b_1\mid a_1\qquad {\bf [contains = divides]}$$
Here $\rm\color{#c00}{U} =$ universal property of ideal sum: $\, A_1+A_2 \subseteq B\!\iff\! A_1,A_2\subseteq B,\,$ for any ideal $\,B,\,$ i.e. the ideal sum is the smallest ideal containing the summands. Above is the special case when the summands $A_i = (a_i)$ are principal ideals.
$\!\!\begin{align}\text{For proper containment:}\ \ (a)\supsetneq (b)&\iff (a)\supseteq (b)\text{ and not }(b)\supseteq (a)\\[.4em]
&\iff\ \ a\ \ \mid\ \ b\ \ \text{ and not }\ \ b\ \ \mid\ \ a
\end{align}$
which means that $\,(a)\supset (b)\,$ properly $\iff\, a\mid b\,$ properly, i.e. the "proper" analog holds.