This one is not bad
$$\pi=\sum_{n=0}^\infty \frac{ (2 n)\text{!!}}{2^{n-1}\,(2 n+1)\text{!!}}$$
The terms form the sequence
$$\left\{2,\frac{2}{3},\frac{4}{15},\frac{4}{35},\frac{16}{315},\frac{16}{693},
\frac{32}{3003},\frac{32}{6435},\frac{256}{109395},\frac{256}{230945},\frac{512}{969969}\right\}$$ and the partial sums the sequence
$$\left\{2,\frac{8}{3},\frac{44}{15},\frac{64}{21},\frac{976}{315},\frac{10816}
{3465},\frac{141088}{45045},\frac{47104}{15015},\frac{2404096}{765765},\frac{45693952}{14549535}\right\}$$ It does not converge very fast sine
$$\frac{a_{n+1}}{a_n}=\frac{n+1}{2 n+3}=\frac{1}{2}-\frac{1}{4 n}+O\left(\frac{1}{n^2}\right)$$
A better one is
$$\pi=\sum_{n=0}^\infty \frac{ (5 n+3)}{2^{n-1}\,(3 n+1) (3 n+2) \binom{3 n}{n}}$$
The terms form the sequence
$$\left\{3,\frac{2}{15},\frac{13}{1680},\frac{3}{6160},\frac{23}{720720},\frac{
1}{466752},\frac{11}{75246080},\frac{1}{99095040}\right\}$$ and the partial sums the sequence
$$\left\{3,\frac{47}{15},\frac{1759}{560},\frac{2419}{770},\frac{205837}{65520}
,\frac{153966181}{49008960},\frac{23402860601}{7449361920},\frac{989459183 }{314954640}\right\}$$ It converges much faster that the previous one since
$$\frac{a_{n+1}}{a_n}=\frac{(n+1) (2 n+1) (5 n+8)}{3 (3 n+4) (3 n+5) (5 n+3)}= \frac{2}{27}-\frac{1}{27 n}+O\left(\frac{1}{n^2}\right)$$