Let $a, b$ be positive integers such that the number $ \dfrac{a + 1}{b} + \dfrac{b + 1}{a}$ is also integer. Then, show that $\dfrac{a + b}{\gcd{(a, b)^{2}}}$ is a Fibonacci number.
I prove that : $ \displaystyle{\forall a, b \in \mathbb{N}} $ such that $ \displaystyle{ k = \frac{a + 1}{b} + \frac{b + 1}{a} \in \mathbb{N} \Rightarrow k = 3 }$ or $ \displaystyle{ k = 4 } $. Also, we have that (I use the method Vieta Jumping) :
$ \displaystyle{ \mathbb{S} = \Big \{ \big( a, b \big) \in \mathbb{N} \times \mathbb{N} : \frac{a + 1}{b} + \frac{b + 1}{a} = k \in \mathbb{N} \Big \} = \Big \{ \big( a, b \big) \in \mathbb{N} \times \mathbb{N} : \frac{a + 1}{b} + \frac{b + 1}{a} = 3 \text{ } or \text{ } \frac{a + 1}{b} + \frac{b + 1}{a} = 4 \Big \} } $
Fibonacci sequence : $\displaystyle{f_{0} = 0, f_{1} = 1}$ and $\displaystyle{f_{n+2} = f_{n+1} + f_{n}, \forall n \in \mathbb{N} \cup \{ 0 \} = \{ 0, 1, 2, 3, . . . \}}$
$ \displaystyle{ k = 3 } $ : If $ \displaystyle{ \big( a, b \big) \in \mathbb{S} } $ with $ \displaystyle{ \frac{a + 1}{b} + \frac{b + 1}{a} = 3 } $, then $ \displaystyle{ \big( 3 \cdot a - 1 - b, a \big) \in \mathbb{S} } $ so we have $ \displaystyle{ \big( 2, 2 \big), \big( 3 = f_{3} + 1, 2 \big), \big( 6 = f_{5} + 1, 3 \big), \big( 14 = f_{7} + 1, 6 \big), \big( 35 = f_{9} + 1, 14 \big), . . . \in \mathbb{S} } $ (I checked some couples and I found that the request is valid) but I can not porve that $ \displaystyle{ \frac{a + b}{\gcd{\big(a, b \big)^{2}}} } $ is a Fibonacci number.
$ \displaystyle{ k = 4 } $ : If $ \displaystyle{ \big( a, b \big) \in \mathbb{S} } $ with $ \displaystyle{ \frac{a + 1}{b} + \frac{b + 1}{a} = 4 } $, then $ \displaystyle{ \big( 4 \cdot a - 1 - b, a \big) \in \mathbb{S} } $ so we have $ \displaystyle{ \big( 1, 1 \big), \big( 2, 1 \big), \big( 6, 2 \big), \big( 21, 6 \big), \big( 77, 21 \big), . . . \in \mathbb{S} } $ (I checked some couples and I found that the request is valid) but also I can not porve that $ \displaystyle{ \frac{a + b}{\gcd{\big(a, b \big)^{2}}} } $ is a Fibonacci number.
I need some help, because I can not solve the problem. So my questions are :
if $ \displaystyle{ \frac{a + 1}{b} + \frac{b + 1}{a} = 3 } $ where $ \displaystyle{ a = f_{2 \cdot n - 1} + 1, b = f_{2 \cdot n + 1} + 1 \in \mathbb{N}, \forall n \geqslant 2, \forall n \in \mathbb{N} } $, how I can show that $ \displaystyle{ \frac{a + b}{\gcd{\big( a, b \big)^{2}}} } $ is a Fibonacci number ?
and
if $ \displaystyle{ \frac{a + 1}{b} + \frac{b + 1}{a} = 4} $ where $ \displaystyle{ a, b \in \mathbb{N} } $, how I can show that $ \displaystyle{ \frac{a + b}{\gcd{\big( a, b \big)^{2}}} } $ is a Fibonacci number ?