I would like to find $$\int \frac{\ln(1-x)}{x}dx$$
On the site where I found this the problem was actually slightly different; the question was to evaluate $$\int_0^1 \frac{\ln(1-x)}{x}dx$$ which can be solved using its Maclaurin series expansion and the solution for the Basel problem, but I was wondering if there's a way to directly find the antiderivative of the integrand. I have tried substitutions included hyperbolic and polynomial ones, such as $x=\sinh^2 x$, but I haven't managed to get anywhere with it.
Would you mind giving me a push in the right direction?
Thank you for your help.