$A$ can be decomposed in a sum $A=S+Q$ of a symmetric matrix $S=\frac 12(A+A^T)$ and a skew-symmetric matrix $Q=\frac 12(A-A^T)$.
When $A$ is symmetric, we just have $S=A$ and $Q=0$.
The general definition for definitive positiveness of a real matrix $M$ is:
- $x^TMx>0$ for any vector $x\neq 0$.
Note: for the complex case change this to $x^*Mx$
We can notice that for skew-symmetric matrices, this product is always zero
$x^TQx\underbrace{=}_\text{this is a scalar}\left(x^TQx\right)^T=x^TQ^Tx=x^T(-Q)x=-(x^TQx)\implies x^TQx=0$
And since $\, x^TAx=x^T(S+Q)x=(x^TSx)+(x^TQx)=x^TSx\, $ then
$A$ is definite positive $\iff S$ is definite positive.
So we move on studying $\, S=\begin{bmatrix}4&-1&\frac b2\\-1&2&-2\\\frac b2&-2&1\end{bmatrix}$
We can now apply Sylvester minors criterion to the symmetric matrix $S$
$\Delta_1=\begin{vmatrix}4\end{vmatrix}=4>0$
$\Delta_2=\begin{vmatrix}4&-1\\-1&2\end{vmatrix}=8-1=7>0$
$\Delta_3=\begin{vmatrix}4&-1&\frac b2\\-1&2&-2\\\frac b2&-2&1\end{vmatrix}=-9+2b-\frac 12 b^2=-\frac 12(b^2-4b+18)<0$
Indeed the quadratic has discriminant $16-4\times 18=-56$ and leading coeff is negative.
Conclusion $A$ is never definite positive (nor semi-definite) for any value of $b$