I would like to know if my solution to the following question concerning the gcd of two polynomial correct>
Question:
Suppose $f(x)$, $g(x)$ and $h(x)$ are polynomials in $F[x]$. Let $gcd(f(x),g(x)h(x))=1$. Show that $gcd(f(x),g(x))=gcd(f(x),h(x))=1$
Proof: Since $gcd(f(x),g(x)h(x))=1$, then there exists some polynomials $u(x)$ and $v(x)$ in $F[x]$ where
$f(x)u(x)+(g(x)h(x))v(x)=1$. $(*)$
Applying associativity of multiplication in $(*)$ gives $(g(x)h(x))v(x)=g(x)(h(x)v(x))$ then $f(x)u(x)+(g(x)h(x))v(x)=f(x)u(x)+g(x)(h(x)v(x))=1$ which implies $gcd(f(x), g(x)=1$.
Applying commutativity to $(*)$, then again associativity of multiplication to $(*)$ gives $(g(x)h(x))v(x)=(h(x)g(x))v(x))$ and $(h(x)g(x))v(x))=h(x)(g(x)v(x))$ in $(*)$
implies that $f(x)u(x)+(g(x)h(x))v(x)=f(x)u(x)+(h(x)g(x))v(x)=f(x)u(x)+h(x)(g(x)v(x))=1$, which gives $gcd(f(x), h(x))=1$ also. Hence we have $gcd(f(x), g(x))=gcd(f(x), h(x))=1$
Thank you in advance